CAI Logo

Gaze Embeddings for Zero-Shot Image Classification

Nour Karessli, Zeynep Akata, Bernt Schiele, Andreas Bulling

Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6412-6421, 2017.

Spotlight Presentation




Abstract

Zero-shot image classification using auxiliary information, such as attributes describing discriminative object properties, requires time-consuming annotation by domain experts. We instead propose a method that relies on human gaze as auxiliary information, exploiting that even non-expert users have a natural ability to judge class membership. We present a data collection paradigm that involves a discrimination task to increase the information content obtained from gaze data. Our method extracts discriminative descriptors from the data and learns a compatibility function between image and gaze using three novel gaze embeddings: Gaze Histograms (GH), Gaze Features with Grid (GFG) and Gaze Features with Sequence (GFS). We introduce two new gaze-annotated datasets for fine-grained image classification and show that human gaze data is indeed class discriminative, provides a competitive alternative to expert-annotated attributes, and outperforms other baselines for zero-shot image classification.

Links


BibTeX

@inproceedings{karessli17_cvpr, title = {Gaze Embeddings for Zero-Shot Image Classification}, author = {Karessli, Nour and Akata, Zeynep and Schiele, Bernt and Bulling, Andreas}, year = {2017}, booktitle = {Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, pages = {6412-6421}, doi = {10.1109/CVPR.2017.679} }