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ABSTRACT
Mouse movement data contain rich information about users, per-
formed tasks, and user interfaces, but separating the respective
components remains challenging and unexplored. As a first step
to address this challenge, we propose DisMouse – the first method
to disentangle user-specific and user-independent information and
stochastic variations from mouse movement data. At the core of
our method is an autoencoder trained in a semi-supervised fash-
ion, consisting of a self-supervised denoising diffusion process
and a supervised contrastive user identification module. Through
evaluations on three datasets, we show that DisMouse 1) captures
complementary information of mouse input, hence providing an
interpretable framework for modelling mouse movements, 2) can
be used to produce refined features, thus enabling various appli-
cations such as personalised and variable mouse data generation,
and 3) generalises across different datasets. Taken together, our
results underline the significant potential of disentangled represen-
tation learning for explainable, controllable, and generalised mouse
behaviour modelling.
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1 INTRODUCTION
The mouse remains one of the most important input modalities
in human-computer interaction (HCI), serving as a ubiquitous
tool for navigating and interacting with a wide range of inter-
active systems. Mouse movements reflect a complex interplay of
various attributes, such as user characteristics (e.g. expertise in
using the mouse and familiarity with the specific system being
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used) [5, 27, 40], interactive goals and tasks that users aim to ac-
complish [10, 11, 29], the layout and elements of user interfaces
(UIs) they interact with [14, 31, 59, 66], and inherent noise within
the mouse device itself [64]. As such, separating these different
attributes from raw mouse movement data has significant potential
but is also profoundly challenging.

Disentangled representation learning has emerged as a promis-
ing new paradigm for tackling this challenge. Separating underlying
data attributes into multiple complementary representations has
gained increasing adoption in various domains, including computer
vision [41, 48, 60], language processing [26], and temporal signal
processing [34, 50]. The disentangled representations have been
shown to offer various benefits, such as producing a set of refined
features [50], providing a clear understanding of the isolated fac-
tors within the data [56], promoting AI explainablity by imitating
how humans obtain semantic meanings [23, 39], or enabling con-
trollable data manipulation by changing a specific representation
component [43]. Despite the potential of disentangled representa-
tions, no existing work has yet separated different representation
components from mouse data.

As a first step to fill this gap, we propose DisMouse – the first
method to disentangle user-specific information, user-independent
information, and stochastic variations within mouse movement
data. We prioritise the particular attribute of users because: under-
standing users is crucial for personalised interactive systems [52],
and user labels are pervasively available in existingmouse datasets [40].
Specifically, DisMouse employs a diffusion-based autoencoder ar-
chitecture and is trained to create near-exact reconstruction of
the input data. We first use the diffusion model to separate the
semantic representation and stochastic variations. We then partic-
ularly design a contrastive user identification module consisting
of two branches to further disentangle the semantic representa-
tion into user-specific and user-independent components: we split
the semantic representation averagely into two halves, and feed
each half to each branch. The two branches are linked inversely
via a gradient reversal layer (GRL) [16], and the minimisation of
their mutual information (MI) [30]. Therefore, this module forces
one branch to refine user-specific information while the other fo-
cuses on user-independent features. We train DisMouse in a semi-
supervised fashion with the diffusion-based reconstruction acting
as a self-supervised learning task, while the contrastive user iden-
tification module is supervised by the user labels. Cross-dataset
evaluations demonstrate that the disentangled representations gen-
eralise and capture complementary information about mouse move-
ments. These representations further empower exploring various
use cases, such as feature refinement and controllable data genera-
tion, including personalised and variable mouse movements, which
can then be used for data augmentation.
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In summary, our contributions are three-fold:

(1) We propose DisMouse1 – the first computational method to
disentangle user-specific, user-independent and stochastic in-
formation from mouse movement data. We present a novel
semi-supervised training paradigm specifically designed for
this goal.

(2) We show that the representations learnt by DisMouse capture
complementary information and achieve cross-dataset general-
isability.

(3) We demonstrate that these disentangled representations enable
various use cases, such as the refinement of mouse features and
controllable generation of mouse movements.

2 RELATEDWORK
We discuss related work on (1) computational representation learn-
ing in HCI, (2) disentangled representation learning, and (3) appli-
cations of mouse movement modelling.

2.1 Computational Representation Learning in
HCI

A crucial step for building data-driven models in HCI is to learn
informative representations of the data. Existingworks have primar-
ily focused on learning joint representations that capture various
aspects of the input data in a single encoding. For example, Wang et
al. presented a Transformer-based autoencoder to learn a semantic
representation that considered both individual UI components and
their hierarchical structure within the interface [55]. Similarly, Li
et al. proposed Screen2Vec to learn a joint representation of user
interface layouts, element hierarchy and application descriptions
using an image autoencoder and a pre-trained language model [33].
Li et al. introduced a contrastive learning-based method to learn
visualisation representations that incorporate visual and structural
information [32]. In early work, Borji et al. used hidden Markov
models to encode mouse movement locations [2], while recently,
Zhang et al. proposed a Transformer-based autoencoder to learn
a comprehensive representation of mouse data in both time and
frequency domains [67]. In terms of keyboard behaviour, Sun et
al. leveraged Gaussian mixture models [52] whereas Zhang et al.
applied a natural language encoder, byte pair encoding, to represent
both mouse and keystroke action sequences [65].

All of these works have focused on learning joint representations
of HCI data. While joint representations have been commonly used
in various HCI tasks, they may not fully capture the underlying
factors influencing these data. Interactive behaviour, in particular,
is a complex interplay of various attributes, including user charac-
teristics, interactive goals and UI designs.

2.2 Disentangled Representation Learning
Disentangled representation learning aims to break down observ-
able data into multiple independent representations that carry com-
plementary aspects within the data. Because of the ability to im-
prove model explainability and controllability [56], disentangled
representations have been widely used in various research fields,

1https://perceptualui.org/publications/zhang24_uist

such as computer vision [41, 48, 60], natural language process-
ing [23], recommender systems [39], and temporal signal process-
ing [34, 50]. For example, Preechakul et al. employed a diffusion
probabilistic model to separate a human face image into two dis-
tinct parts: a high-level component capturing the overall semantic
meaning and a low-level component representing stochastic varia-
tions [43]. These disentangled representations enabled applications
such as image attribute manipulation, where users could modify
specific aspects of an image while preserving others. Wang et al.
disentangled an image into its content and style components. Their
method explicitly extracted the content information and implicitly
learnt the complementary style information via diffusion mod-
els [57]. In the realm of time series data, Li et al. proposed a varia-
tional autoencoder-based framework to disentangle both individual
latent factors and group-level semantic segments [34]. This enabled
the creation of refined features and allowed researchers to under-
stand which components captured information about what aspects
of the input data. Su et al. focused on human activity signals, in-
cluding a 3-axis accelerometer, gyroscope, and magnetometer. They
proposed a method to disentangle activity patterns from personal
styles or environmental noise using an adversarial disentanglement
mechanism [50].

Despite the benefits of separating information contained in data,
disentangling representations from user interactive behaviour re-
mains unexplored. Our work fills this gap by learning disentangled
representations from mouse movement behaviour – a pervasive, in-
formative, and important modality in HCI research and real-world
applications.

2.3 Applications of Mouse Movement Modelling
Mouse data have been demonstrated to be crucial for numerous
applications, such as user modelling [5, 13, 40], interactive goal
recognition and forecasting [11, 29, 31]. Different from prior works
that used information theory [19], motor control [8, 18, 28, 38,
54], or statistical methods [35] to model mouse movements in 3D
space, we focus on data-driven methods for on-screen mouse data.
For example, Chuda et al. extracted features including movement
velocity and acceleration to identify users during the process of
web browsing [5]. Xu et al. showed that users’ visual attention
could be predicted from mouse movements [59] while Rheem et
al. revealed that the mouse response time and trajectory deviation
are closely linked with cognitive load [45]. Elbahi et al. used mouse
trajectories in an e-learning interface to fit a hidden Markov model
to recognise interactive tasks [10], while Zhang et al. built random
forest-based classifiers to predict the next formatting activity that
users intended to perform in a text editing scenario based on their
mouse movement coordinates [66]. Although mouse data have been
used in various data-driven applications like the above, most of
them followed the same workflow of learning a joint representation
and then building a classifier on top. The entangled underlying
attributes within mouse movement data restrict the use cases of
mouse behaviour.

In contrast, DisMouse disentangles three mouse representations
that contain different, refined information of user-specific, user-
independent and stochastic variations. This unlocks new possi-
bilities for HCI applications, including fine-grained control over

https://perceptualui.org/publications/zhang24_uist
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the generation process, leading to personalised or variable mouse
movement data.

3 DISENTANGLING MOUSE BEHAVIOUR
To decompose different information from mouse movement data,
we propose DisMouse, a novel semi-supervised method leverag-
ing a diffusion-based autoencoder (see Figure 1 for an overview
of our method). DisMouse can disentangle three components, i.e.,
user-specific representation, user-independent representation and
stochastic variations within the data. We prioritised the user fac-
tor in this work because understanding user characteristics is key
to personalised interactive systems [40, 52], and existing mouse
datasets often provide user labels, making incorporating user iden-
tity in the analysis and training process feasible.

3.1 DisMouse Architecture
Overall, DisMouse utilised an autoencoder architecture and was
trained in a semi-supervised manner. We employed a self-supervised
diffusion process (depicted by the blue and purple arrows in Fig-
ure 1) to reconstruct the input data while separating semantic infor-
mation and the remaining stochastic variations 𝑥𝑇 . 𝑥𝑇 is essential
for near-exact reconstruction and data manipulation [43]. We chose
diffusion models because they have achieved state-of-the-art perfor-
mance in data denoising, reconstruction and generation [22, 25, 60].
To further disentangle the remaining semantic information, we par-
ticularly designed a supervised module (green arrows in Figure 1),
comprised of two classifiers based on multi-layer perceptron (MLP).
Both classifiers were trained for user identification, but they were
linked inversely through a gradient reversal layer (GRL) [16] and a
mutual information loss (𝐿𝑀𝐼 ) [30]. Our model facilitated the inde-
pendent learning of individual representation components while
enabling their subsequent integration for data generation within a
unified diffusion-based framework.

3.1.1 Self-Supervised Diffusion Process. Our approach leveraged
a self-supervised diffusion process to learn a joint semantic rep-
resentation and stochastic variations. We first used a semantic
encoder to compress the input data into a latent embedding vector
(denoted by 𝐸𝑠𝑒𝑚). This embedding subsequently served as a con-
ditioning signal to guide the denoising process and generate the
output within the decoder.

For the decoder, we adopted a conditional DDIM (denoising
diffusion implicit model) [49], which included a forward and a
reverse process. During the forward process, Gaussian noise was
progressively added to to the input 𝑥0 across discrete time steps 𝑡
(𝑡 ∈ [1,𝑇 ]) to generate a sequence of increasingly noisy versions
𝑥𝑡 :

𝑞(𝑥𝑡 |𝑥0) = 𝑁 (√𝛼𝑡𝑥0, (1 − 𝛼𝑡 )𝐼 ), 𝛼𝑡 =
𝑡∏
𝑖=1

(1 − 𝛽𝑖 ) (1)

where 𝛽𝑡 is a hyperparameter controlling the noise level at each
step. The reverse denoising process 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚) of DDIM is a de-
terministic process guided by the condition 𝐸𝑠𝑒𝑚 , aiming to recover
the clean input 𝑥0. This process is formulated as:

𝑝𝜃 (𝑥0:𝑇 |𝐸𝑠𝑒𝑚) = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝐸𝑠𝑒𝑚) (2)

where

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝐸𝑠𝑒𝑚) =
{

𝑁 (𝑓𝜃 (𝑥1, 1, 𝐸𝑠𝑒𝑚), 0) 𝑡 = 1
𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑓𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

In practice, 𝑓𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚) denotes a neural network function im-
plemented with a UNet architecture [46] trained to estimate the
denoised version at each step. The specific form of 𝑓𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚)
is given by:

𝑓𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚) = 1
√
𝛼𝑡

(𝑥𝑡 −
√
1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚)) (4)

After being trained, the DDIM can also be used as a stochastic
encoder to particularly compute a deterministic 𝑥𝑇 from the input
data (depicted by the purple arrows in Figure 1). This 𝑥𝑇 is impor-
tant for use cases like data reconstruction and manipulation. The
computation simply runs the deterministic process backwards [43]:

𝑥𝑡+1 =
√
𝛼𝑡+1 𝑓𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚) +

√
1 − 𝛼𝑡+1𝜖𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚) (5)

The DDIM employs a UNet composed of 20 residual blocks based
on one-dimensional convolutional layers (1DCNN) inspired by [7],
where each block incorporates a skip connection to improve the
training efficiency [20]. The detailed architecture of the residual
block can be found in Figure 2. We opted for 1DCNN given its
ability to capture local dependencies of the input signals, good
performance in prior diffusion models, and fast computation [53].
The semantic embedding 𝐸𝑠𝑒𝑚 is first input to a two-layer MLP
and then fed to the conditional DDIM module. According to Equa-
tion 4 and 5, the time step 𝑡 is required in the diffusion process.
Therefore, we also input 𝑡 to a separate MLP before feeding into the
conditional DDIM. The semantic encoder uses a simplified residual
block that only has the first three layers (group normalisation [58],
SiLU activation [21] and 1DCNN), given that it does not need any
conditioning information. The 1DCNN layer had 128 channels and
kernels of size 3, a stride of 1 and a padding of 1. As such, the
dimension of 𝐸𝑠𝑒𝑚 is 128.

3.1.2 Supervised User Information Disentanglement. To further sep-
arate the user-specific and user-independent information within
the semantic representation 𝐸𝑠𝑒𝑚 , we particularly designed a super-
vised learning module (the Contrastive User Identification module
in Figure 1). This module leverages a contrastive strategy to en-
courage the disentanglement of these information components.

We first split 𝐸𝑠𝑒𝑚 into two equal halves, i.e., the dimension of
each half is 64. We sent the first half to an MLP-based classifier
to perform user identification. This directly encourages the first
half to capture user-specific information for accurate user identity
classification. On the contrary, the second half is processed through
a GRL [16] before being fed to a separate user identification classi-
fier. The GRL essentially inverts the sign of the gradient and thus
achieves the reversion of updating direction during backpropaga-
tion [9]. Through GRL, DisMouse pushes the second half of the
embedding towards user-independent information and discourages
user differentiation while prompting capturing general patterns in
mouse movements. Both classifiers comprise two fully-connected
layers with 256 hidden units each, separated by a ReLU activation
function. A Softmax layer at the end predicts user identification
labels. Overall, this contrastive training paradigm encourages the
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Figure 1: Overview of DisMouse, our proposed semi-supervised model for disentangling information from mouse movement
data. Our model employs a self-supervised denoising diffusion process to decompose the input into a semantic embedding 𝐸𝑠𝑒𝑚
and stochastic variations 𝑥𝑇 . We then particularly design a supervised contrastive module (in the dashed box) to disentangle
user-specific (𝐸𝑢𝑠𝑒𝑟 ) and user-independent (𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 ) representations. Here, we split 𝐸𝑠𝑒𝑚 equally into two halves and then
feed the first half to an MLP-based classifier for user identification and the second half to a second classifier with a similar
architecture but an additional gradient reversal layer (GRL). During training, the model leverages a combination of loss
functions, including the reconstruction loss for denoising, two classification losses for the contrastive user identification, and a
mutual information loss to push 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 towards semantic distinction.
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Figure 2: Architecture of the residual block used in the con-
ditional DDIM, conditioned on time step 𝑡 and the semantic
representation 𝐸𝑠𝑒𝑚 .

first half (𝐸𝑢𝑠𝑒𝑟 ) to encode user-specific information while guiding
the second half (𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 ) to represent user-independent patterns.

3.2 Semi-Supervised Training Scheme
3.2.1 Multi-Task Training. To train DisMouse, we proposed a novel
semi-supervised training scheme, combining the aforementioned
training tasks:
(1) Diffusion denoising: We compared the original input data

with the reconstruction, as well as the noise 𝜖 added in the for-
ward process with the predicted noise 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚) in the de-
noising process. We calculated the mean squared errors (MSEs)
from the two comparisons to form the loss function 𝐿𝑟𝑒𝑐𝑜𝑛 for

this task:

𝐿𝑟𝑒𝑐𝑜𝑛 = 𝐿𝑛𝑜𝑖𝑠𝑒 + 𝐿𝑖𝑛𝑝𝑢𝑡

= ∥𝜖𝜃 (𝑥𝑡 , 𝑡, 𝐸𝑠𝑒𝑚) − 𝜖 ∥22 + ∥𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 − 𝐼𝑛𝑝𝑢𝑡 ∥22

(2) Contrastive user identification: We utilised two separate
branches for user identification. Each branch corresponded to
a cross-entropy loss function (𝐿𝑢𝑠𝑒𝑟 and 𝐿𝑛𝑜𝑛𝑢𝑠𝑒𝑟 ) comparing
the predicted labels with the ground-truth labels. In addition,
we incorporated a mutual information loss 𝐿𝑀𝐼 between the
user-specific representation 𝐸𝑢𝑠𝑒𝑟 and the user-independent
representation 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 to encourage extracting discriminative
patterns [68, 69].

In summary, the overall training loss 𝐿𝑡𝑜𝑡𝑎𝑙 of DisMouse is defined
as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝛽 (𝐿𝑢𝑠𝑒𝑟 + 𝐿𝑛𝑜𝑛𝑢𝑠𝑒𝑟 + 𝐿𝑀𝐼 ) (6)

where 𝛽 is a hyperparameter controlling the weight of the user
identification losses and the MI loss. We set 𝛽 to 0.01 in our experi-
ments. We trained the model for 250 epochs with a batch size of
512 and used the Adam optimiser with a learning rate of 1e-4.

3.2.2 Dataset. We trained DisMouse on the Clarkson dataset [40]
given that, to our best knowledge, it is the largest publicly available
dataset collected in an unconstrained real-world setting. The dataset
contains mouse movement data from 103 participants over a time
span of 2.5 years, and consists of 24.7M samples. The large user
population and extended collection period give the Clarkson dataset



DisMouse: Disentangling Information from Mouse Movement Data UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

the potential to offer diverse and comprehensive representations of
mouse behaviour.

3.3 Data Preprocessing
The mouse movement input is a sequence of samples. Each sample
is a triplet (𝑥,𝑦, 𝑡), where 𝑥 and𝑦 denote the current on-screen coor-
dinates of the cursor, and 𝑡 is the timestamp. To account for varying
screen resolutions, we first rescaled the raw 𝑥 and 𝑦 coordinates
to the [0, 1] range via a MinMaxScaler. Unlike fixed-rate sampling
techniques, mouse data collection produces samples only when
the mouse moves. To ensure consistent sampling frequency, we
resampled the mouse data at 20Hz aligning with prior work [42, 67].
Specifically, if a sampling unit (50ms) lacked data, we duplicated
the previous sample to maintain temporal consistency. Then, we di-
vided themouse data into eight-second segments, with a one-second
stride [17, 44]. These segments serve as the input to DisMouse for
further processing and analysis.

4 EVALUATION OF DISENTANGLEMENT
We evaluated the effectiveness of DisMouse in disentangling the
three representations 𝐸𝑢𝑠𝑒𝑟 , 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 , and 𝑥𝑇 . We examined if the
three representations contained the corresponding expected in-
formation: Both 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 carried semantic information,
whereas 𝑥𝑇 primarily captured the inherent stochastic variations
within the mouse movement data; between the two semantic repre-
sentations, 𝐸𝑢𝑠𝑒𝑟 hadmore user-specific informationwhile 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟
contained more general, user-independent information.

To assess the generalisability of our method, we froze the trained
DisMouse and transferred it to other datasets without any fine-
tuning. We chose two datasets – ACTIVITY [66] and EMAKI [65],
given that they are publicly available and cover both lab and out-of-
the-lab settings. ACTIVITY comprises data from 16 participants for-
matting pre-defined text in a controlled laboratory setting. In each
trial, participants performed a sequence of formatting activities.
There were seven candidate activities: bold, italic, underline, font
size, font family, alignment, and indentation. The EMAKI dataset,
on the other hand, represents an out-of-the-lab dataset collected
in a more natural setting. 39 participants joined an online user
study using their own computers to perform three interactive tasks:
writing and editing an article, drawing and editing images, and
completing questionnaires about demographics and personality
traits.

4.1 Semantic vs. Stochastic Representations
We assessed the quality of the learnt representations by evaluat-
ing their effectiveness in reconstructing the original input data.
Reconstruction quality reflects the ability of these representations
to capture essential information about the mouse movement data.
We calculated the mean squared error (MSE) between the recon-
struction and the original input as the evaluation metric. A lower
MSE indicates a better reconstruction. To pinpoint which repre-
sentation pertained to the core properties of the input mouse data,
we conducted an ablation study of the representations. Instead of
discarding a representation entirely, we replaced each of them with
Gaussian noise during the reconstruction. This is because the diffu-
sion process inherently requires all three components to produce a

Model ACTIVITY EMAKI

DisMouse 9.86e-5 3.24e-5
𝐸𝑢𝑠𝑒𝑟 → Noise 1.46e-2 4.30e-3
𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 → Noise 1.15e-2 9.12e-3
𝑥𝑇 → Noise 1.29e-3 5.26e-4

Table 1: Reconstruction MSE achieved by DisMouse and by
replacing each of the learnt representations (𝐸𝑢𝑠𝑒𝑟 , 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 ,
𝑥𝑇 ) with Gaussian noise sampled from 𝑁 (0, 𝐼 ). Replacing any
of them results in significantly larger reconstruction errors,
indicating that all three components contain meaningful in-
formation about themousemovement data. Compared to the
stochastic variations 𝑥𝑇 , replacing the semantic representa-
tions 𝐸𝑢𝑠𝑒𝑟 or 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 leads to larger MSE increases, showing
that these two representations capture more critical infor-
mation of the mouse data. The lowest MSEs corresponding
to the best reconstruction quality are marked in bold.

reconstruction. As shown in Table 1, using all three representations
together (DisMouse) yielded the best reconstruction quality. This
confirmed that each component captures meaningful aspects of the
input mouse movement data and that the information in the three
components was complementary to each other. Compared to 𝑥𝑇 ,
replacing the semantic representations 𝐸𝑢𝑠𝑒𝑟 or 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 brought
a larger MSE increase, with over 100 times higher MSE on both
test datasets. This observation suggests that 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟
encoded more critical information than 𝑥𝑇 . These results are in
line with prior findings that 𝑥𝑇 captures the remaining stochastic
variations and is essential for reconstruction in DDIM [43].

Furthermore, we plotted human-interpretable reconstruction
results achieved by modifying the three representations in Figure 3.
Wemanipulated the representations by adding noise 𝜆𝑛, 𝑛 ∼ 𝑁 (0, 𝐼 )
to them and observed their impact. Starting from the left, the five
columns display: the ground truth input, the reconstruction via Dis-
Mouse, reconstruction with altered 𝐸𝑢𝑠𝑒𝑟 , reconstruction with al-
tered 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 and reconstruction with altered 𝑥𝑇 , respectively. We
can see that modifying 𝑥𝑇 primarily affects minor details while al-
tering 𝐸𝑢𝑠𝑒𝑟 or 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 significantly impacts the mouse movement
trajectory’s shape, location and underlying interactive goal. We
further validated this quantitatively by calculating MSEs between
the original and generated mouse traces and conducting Wilcoxon
signed-rank tests. We found significant differences between Dis-
Mouse and 𝐸𝑢𝑠𝑒𝑟+Noise, as well as 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟+Noise (𝑝 < .001), but
no significant difference between DisMouse and 𝑥𝑇 +Noise. These
observations reinforce the notion that 𝑥𝑇 conveys finer stochastic
variations, while 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 carry higher-level semantic
information.

4.2 User-Specific Information
To quantify if and how much each component grasped user-specific
information, we compared each component’s performance on user
identification. We first used the frozen semantic encoder to get
𝐸𝑢𝑠𝑒𝑟 , and then input it to train new classifiers with varying nodes
in the last layer for different datasets. We employed five-fold user-
dependent cross-validation since both the training and testing sets
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Original DisMouse xT + Noise Euser + Noise Enonuser + Noise

Figure 3: Four examples of input reconstruction using the representations (𝐸𝑢𝑠𝑒𝑟 , 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 and 𝑥𝑇 ) learnt by DisMouse, and
altering each of them by addingGaussian noise. Each small arrow indicates amousemovement data sample (50ms). The columns
(from left to right) display the original mouse trajectories, the reconstruction via DisMouse, as well as the reconstruction with
the altered, noisy 𝐸𝑢𝑠𝑒𝑟 , 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 and 𝑥𝑇 , respectively. Changing 𝑥𝑇 primarily affects minor details, such as the smoothness of the
path while preserving the overall patterns like shapes and locations. On the other hand, altering 𝐸𝑢𝑠𝑒𝑟 or 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 significantly
impacts the reconstructed mouse movement. These observations indicate that 𝑥𝑇 mainly captures stochastic variations, while
𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 encode core semantic information of mouse behaviour.

Input ACTIVITY EMAKI

Handcrafted Features (Full) 36.62±1.98 23.74±1.17
Handcrafted Features (L1) 40.55±1.23 24.22±1.48
Handcrafted Features (Tree) 37.40±1.06 25.88±0.70
VAE 𝜇 35.42±1.10 26.20±0.19
VAE 𝜎 23.86±1.04 20.52±0.33

DisMouse
𝐸𝑢𝑠𝑒𝑟 51.00±1.39 37.60±0.40
𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 28.35±1.00 13.62±0.23
𝑥𝑇 14.23±0.67 11.19±0.29

Table 2: User identification accuracies (mean±standard devi-
ation, in percentage) achieved on the ACTIVITY and EMAKI
datasets using the representations learnt by DisMouse (𝐸𝑢𝑠𝑒𝑟 ,
𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 and 𝑥𝑇 ). We compared with handcrafted features
(the full set or subsets selected by L1-/tree-based methods)
and representations learned by a 1DCNN-based VAE (𝜇 or 𝜎).
The highest accuracies are shown in bold, and the second
highest are underlined.

must contain data from every user. Specifically, we first randomly
divided each participant’s data into five sets, and in each fold, we
combined the four sets from all users for training. At the same time,
the remaining were used for testing. We repeated this process five
times and reported their average accuracy in Table 2. To better
understand the performance, we also included the results obtained
using 75 handcrafted features and a variational autoencoder (VAE)
as references. These handcrafted features have been commonly
used by a wide range of mouse modelling works and typically cap-
ture statistics of on-screen locations, angles, velocities, etc (refer
to Appendix A for the complete set). We further added L1-based and
tree-based feature selection methods2 on these features. In addition,
we compared with VAE, a well-established method of learning gen-
eralised, entangled representations. We implemented the VAE based
on 1DCNN, the identical basic block employed in DisMouse. Given
that VAEs learnt two latent embeddings representing the mean (𝜇)
and standard deviation(𝜎), we compared DisMouse representations
with both of them.

As shown in Table 2, 𝐸𝑢𝑠𝑒𝑟 largely outperformed the other two
components, the handcrafted features, and VAE representations.

2https://scikit-learn.org/stable/modules/feature_selection.html

https://scikit-learn.org/stable/modules/feature_selection.html
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For example, compared to 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 , 𝐸𝑢𝑠𝑒𝑟 obtained a 23.98% (1.76x)
higher accuracy on EMAKI and a 22.65% higher accuracy on ACTIV-
ITY. Compared to the handcrafted features and the representations
learnt by VAE, 𝐸𝑢𝑠𝑒𝑟 exhibited improvements of 10.45% and 11.40%
on ACTIVITY and EMAKI, respectively. This showed that 𝐸𝑢𝑠𝑒𝑟
encoded rich user-specific information. On the contrary, 𝑥𝑇 consis-
tently achieved the lowest accuracies across datasets. For instance,
𝑥𝑇 obtained approximately only half the accuracy compared to
𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 (14.23% vs. 28.35%) on the ACTIVITY dataset. This obser-
vation again indicated that 𝑥𝑇 possessed stochastic variations with
minimal semantic user information.

4.3 Effectiveness of DisMouse Design
Since we particularly designed a two-branch contrastive module
and minimised mutual information between 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 to
disentangle the semantic information, we conducted an ablation
study of these new designs to examine their contributions. We
separately removed either of the two branches and its correspond-
ing loss 𝐿𝑢𝑠𝑒𝑟 or 𝐿𝑛𝑜𝑛𝑢𝑠𝑒𝑟 , as well as the mutual information loss
𝐿𝑀𝐼 . User identification performance was then evaluated for each
configuration. From Table 3, we can observe that removing any of
the above designs impacted the representations as expected. User
identification accuracy for 𝐸𝑢𝑠𝑒𝑟 decreased, indicating a reduction
in captured user-specific information. Conversely, the accuracy
for 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 improved, suggesting that it contained more user in-
formation in these ablated models. As such, the gap between the
two representations was reduced. For example, on the ACTIVITY
dataset, removing the branch that weakened user identification
(𝑤/𝑜 𝐿𝑛𝑜𝑛𝑢𝑠𝑒𝑟 ) resulted in a difference of only 2.59% between the
accuracies of 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 . These observations indicated that
the ablations led to less disentanglement of the user-related seman-
tic information. Therefore, our design of the contrastive module
and the MI loss in DisMouse is effective. They play a crucial role in
disentangling user-related semantic information from the overall
representation and lead to a clear separation between user-specific,
user-independent semantics and stochastic variations.

5 USE CASES ENABLED BY DISMOUSE
We next report three use cases unlocked by the disentangled rep-
resentations that isolated specific attributes of the mouse move-
ment data: DisMouse can concurrently refine user-specific and
user-independent features 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 , which have the po-
tential to benefit applications requiring corresponding features;
manipulating 𝐸𝑢𝑠𝑒𝑟 can be used to generate personalised mouse
movement data; and altering 𝑥𝑇 can generate mouse movement
variations to augment training data further.

5.1 Refining Mouse Movement Features
Prior research has shown that representations tailored to specific
attributes can improve applications that rely heavily on those at-
tributes, e.g., activity-related representations for human activity
recognition [50]. DisMouse has the ability to refine different seman-
tic features (𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 ) simultaneously. As demonstrated
in Table 2, 𝐸𝑢𝑠𝑒𝑟 , the refined user-specific features consistently
achieved higher user identification accuracy compared to the hand-
crafted features that contain rich but a mix of user-specific and

user-independent information. We further examined whether the
refined user-independent features, 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 , could benefit applica-
tions that value patterns that are shared across users rather than
those specific to users.

We focused on two example applications, task recognition and
next activity prediction, that are essential for adaptive and antici-
patory interactive systems [12, 31, 67]. Given that the ACTIVITY
dataset provided annotations of seven activities and EMAKI pro-
vided labels of three interactive tasks, we conducted next activity
prediction on ACTIVITY and task recognition on EMAKI. We per-
formed a five-fold user-independent cross-validation to assess the
generalisability of DisMouse across users on the two applications.
As such, we randomly split these participants into five sets. In each
fold, we trained the classifier using data from four sets of partici-
pants and tested it on the remaining set. We repeated this procedure
five times and calculated the average accuracy across all folds as
the final performance metric.

As Table 4 presents, 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 consistently obtained higher ac-
curacies than the handcrafted features and VAE representations.
A Wilcoxon signed-rank test confirmed the statistical significance
of these improvements. When predicting which one out of seven
activities the user would perform the next on the ACTIVITY dataset,
𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 improved the accuracy by 4.17% (𝑝 < .01) compared to
handcrafted features and VAE embeddings. Similarly, when recog-
nising which one out of the three tasks the users were performing
on the EMAKI dataset, 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 achieved an accuracy improve-
ment by 3.30% (𝑝 < .01). These results demonstrated that 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟
effectively captured information related to common patterns across
users. In addition, DisMouse consistently outperformed existing
methods that were specifically designed for these classification
tasks (see Appendix B). Therefore, DisMouse can concurrently re-
fine distinct mouse features, making them valuable for applications
requiring specific information types.

5.2 Generating Personalised Mouse Movement
Data

DisMouse’s ability to disentangle user-specific information unlocks
the possibility of personalised mouse movement data generation.
This section explores the potential of using 𝐸𝑢𝑠𝑒𝑟 to synthesise
mouse trajectories that maintain the original user’s interaction in-
tent while adopting the movement style of another user. Specifically,
given a mouse movement trajectory from user A, we replaced its
user-specific representation 𝐸𝐴𝑢𝑠𝑒𝑟 with a different user, B’s 𝐸𝐵𝑢𝑠𝑒𝑟 .
The remaining components, 𝐸𝐴𝑛𝑜𝑛𝑢𝑠𝑒𝑟 (capturing user-independent
movement patterns) and 𝑥𝐴

𝑇
(representing stochastic variations),

are retrained from user A. This modified representation set (𝐸𝐵𝑢𝑠𝑒𝑟 ,
𝐸𝐴𝑛𝑜𝑛𝑢𝑠𝑒𝑟 , 𝑥𝐴𝑇 ), was then fed into the DisMouse diffusion process to
generate a new mouse trajectory. The resulting mouse movement
trajectory reflects the original user’s interaction goal (e.g., similar
movement direction and location) but is executed in the movement
style characteristic of the target user. To illustrate this concept, we
selected two users from the ACTIVITY datasets who exhibit dis-
tinct movement styles. We plotted five examples from each of the
two users in the first and fourth rows of Figure 4 in green. We can
see that user A generated smoother and more flowing movements,
while user B tended to make sharper turns and used more straight
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Model ACTIVITY EMAKI

𝐸𝑢𝑠𝑒𝑟 ↑ 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 ↓ 𝐸𝑢𝑠𝑒𝑟 ↑ 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 ↓
DisMouse 51.00±1.39 28.35±1.00 37.60±0.40 13.62±0.23
w/o 𝐿𝑢𝑠𝑒𝑟 40.82±1.53 35.14±0.80 26.52±0.47 19.48±0.30
w/o 𝐿𝑛𝑜𝑛𝑢𝑠𝑒𝑟 42.07±1.18 39.48±0.75 32.49±0.54 22.89±0.45
w/o 𝐿𝑀𝐼 45.46±0.80 33.59±0.91 31.07±0.16 18.76±0.19

Table 3: User identification accuracies (mean±standard deviation, in percentage) on the ACTIVITY and EMAKI datasets using
DisMouse and the different ablations of our designs for disentangling mouse representation. These designs include contrastive
user identification (𝐿𝑢𝑠𝑒𝑟 and 𝐿𝑛𝑜𝑛𝑢𝑠𝑒𝑟 ), and minimising the mutual information between 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 (𝐿𝑀𝐼 ). Removing
any of these components resulted in a decrease in 𝐸𝑢𝑠𝑒𝑟 performance and an increase in 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 performance, indicating a
shift in the information captured by each representation. The gap between 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 accuracy also narrowed. These
observations support the effectiveness of our method designs in disentangling user-specific and user-independent information
from mouse movement data. The highest 𝐸𝑢𝑠𝑒𝑟 accuracies and the lowest 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 accuracies are marked in bold.

Original B 

Original A 

Generated A’s style 

Generated B’s style 

Replace 𝐸!"#$%

with 𝐸!"#$&

Replace 𝐸!"#$&

with 𝐸!"#$%

Figure 4: Generating mouse movement data that are personalised to two users from the ACTIVITY dataset. The first and fourth
rows (in green) depict five examples of their original trajectories. User A exhibits smoother and flowing movements, whereas
B’s trajectories involve sharper turns and more straight lines. We swapped their user-specific representation 𝐸𝑢𝑠𝑒𝑟 to generate
trajectories in each other’s style (second and third rows, red). The generated data retain the original moving directions and
locations but adopt the stylistic characteristics of the target user.

lines. Then we swapped their 𝐸𝑢𝑠𝑒𝑟 components and plotted the
generated new trajectories in red in the second and third rows.

The generated trajectories demonstrate the effectiveness of our
approach. These new data maintained the original movement di-
rections and locations (interactive goals) but exhibited the stylistic
characteristics of the target user. We observe that the generated
data have moving directions and locations similar to the original
trajectory but in target users’ styles. For example, after replacing
the A’s 𝐸𝑢𝑠𝑒𝑟 with B’s, the trajectories became sharper and con-
tained more straight lines; whereas replacing B’s 𝐸𝑢𝑠𝑒𝑟 with A’s
led to trajectories that have fewer abrupt turns but more rounded

corners. This initial exploration paves the way for further investiga-
tion and potential applications in personalised behaviour modelling,
user-centred designs and creating realistic and user-specific test
scenarios.

5.3 Generating Mouse Movement Variations
Limited labelled data is a persistent challenge in the HCI commu-
nity due to the high cost of data collection and annotation [4, 51].
DisMouse offers a solution by leveraging the stochastic variation
component 𝑥𝑇 to generate mouse movement variations. Figure 3
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Input Next Activity
Prediction

Task
Recognition

Handcrafted Features (Full) 58.61±2.32 67.94±0.23
Handcrafted Features (L1) 53.52±3.03 67.49±1.33
Handcrafted Features (Tree) 55.68±0.78 66.19±0.74
VAE 𝜇 59.51±0.58 67.59±1.22
VAE 𝜎 57.86±1.81 64.11±2.17
𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 63.68±6.16 71.24±1.81

Table 4: Accuracies (mean±standard deviation, in percentage)
achieved on next activity prediction and task recognition,
which are two example applications that focus on common
(user-independent) patterns and are relevant for intelligent
interactive systems. We compared 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 with handcrafted
features (the full set or subsets selected by L1-/tree-based
methods) and representations learned by a 1DCNN-based
VAE (𝜇 or 𝜎). The highest accuracies are shown in bold, and
the second highest are underlined.

has shown that adding Gaussian noise to 𝑥𝑇 can simulate such
variations that preserve the core movement intent (shape, loca-
tion and directions) while differing in details like the straightness
between two points. As such, DisMouse can be used to augment
training data for data-driven models. We randomly kept 5% of the
training data to imitate the scarcity of labelled data [62, 67]. For
each training sample, we sampled Gaussian noise and added it to
𝑥𝑇 19 times to generate 19 similar mouse movement trajectories,
assigned them the same label as the training sample, and added
them to the training set. In this way, we restored the training set to
the original size.

We covered all the aforementioned classification applications,
i.e., we presented the performance of data augmentation on user
identification, next activity prediction and task recognition. We
compared our approach with six commonly used data augmen-
tation methods, including duplication, jittering, scaling, rotation,
permutation or warping [24, 61]. Every method created 19 aug-
mented samples for each of the samples to restore the data set to
the original size. As Table 5 demonstrates, augmenting data using
our 𝑥𝑇 consistently outperformed other augmentation methods
across all the applications and datasets. For example, the accuracy
of next activity prediction improved by 4.79% (𝑝 < .001), task
recognition improved by 1.35% (𝑝 < .05), and user identification
improved by 1.70% (𝑝 < .01) and 1.44% (𝑝 < .05) on the ACTIVITY
and EMAKI datasets, respectively. The Wilcoxon signed-rank test
confirmed the statistical significance of these enhancements. Our
approach surpassed data duplication because altering 𝑥𝑇 injected
additional informative content by changing movement details while
preserving the essential semantics of the original data. As such, this
strategy expanded the training set with meaningful variations.

6 DISCUSSION
6.1 Potential of Disentangling Mouse Behaviour
Disentangled representation learning separates underlying data at-
tributes into different components, thus contributing to explainabil-
ity and creating the opportunity for various use cases. As the first
to disentangle mouse information, we separated the user-specific

and user-independent semantics and stochastic variations. For ex-
ample, we have shown that these disentangled representations
enabled controllable, personalised (Section 5.2) or variable (Section
5.3) mouse movement data generation. DisMouse also concurrently
produced two refined mouse features 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 . The re-
finement was effective for applications that focused on specific
information. For example, 𝐸𝑢𝑠𝑒𝑟 contained refined user-specific
features and thus benefited the corresponding application of user
identification (see Table 2); whereas 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 carried the residual
semantic information and thus benefited applications leveraging
universal patterns rather than individual user patterns, such as next
activity prediction and task recognition (see Table 4). We conducted
experiments across different datasets and applications, showing the
generalisability of our DisMouse.

Furthermore, given that 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 grasped user-independent in-
formation, it presents an exciting opportunity for anonymising
mouse movement data, i.e., removing user-specific characteris-
tics while preserving common interaction patterns. Investigating
privacy-related applications in future research will also be interest-
ing, such as enhancing the security UIs and user behaviour analysis
tools.

We have demonstrated the effectiveness and strong potential of
disentangling mouse representations in understanding, characteris-
ing and generating mouse movement data, which can be used to
improve future interactive systems. Our work also provides inspira-
tion of disentangling representations of other interactive behaviour
and HCI data.

6.2 Design of DisMouse
We propose the first method of disentangling mouse movement
data, using a conditional diffusion-based encoder-decoder archi-
tecture. We chose diffusion models because of their recent ground-
breaking success in generating language or vision data [37, 63], but
they are still under-explored in HCI. The autoencoder architecture
first allowed us to learn representations of the input, manipulate
any of them, and subsequently integrate them to generate mouse
movement data. To disentangle user-specific and user-independent
semantic representations, we particularly introduced a two-branch
supervised module including the following designs: 1) feeding the
first half of the semantic representation to one classifier for user
identification to learn user-specific information; 2) inputting the
second half to another user identifier but after a GRL to learn user-
independent information; 3) minimising the mutual information
between the two halves. We illustrated that the disentangled three
representations (𝐸𝑢𝑠𝑒𝑟 , 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 and 𝑥𝑇 ) conveyed different and
complementary information of the input data, via examining the
reconstruction both visually (Figure 3) and through MSE metrics
(Table 1), as well as via user identification (Table 2). An ablation
study showed that all three designs were essential for effective
disentanglement (Table 3).

Moreover, we transferred the frozen DisMouse model trained on
a large-scale dataset, Clarkson, to two other datasets, ACTIVITY
and EMAKI. The three datasets were collected from users under
various interactive tasks and settings. For example, Clarkson was
collected in a totally unconstrained setting, while ACTIVITY was
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Augmentation
ACTIVITY EMAKI

Next Activity
Prediction

User
Identification

Task
Recognition

User
Identification

Duplication 53.96±5.62 13.11±3.82 57.85±2.38 6.13±0.44
Jittering 53.18±8.86 10.43±4.28 53.88±3.98 5.05±1.20
Scaling 51.93±8.56 12.11±5.27 57.07±2.64 6.18±0.59
Rotation 53.64±2.46 11.45±2.45 57.92±2.68 5.10±1.04

Permutation 42.20±8.48 10.76±4.03 45.04±3.04 3.92±1.28
Warping 47.15±5.54 11.14±4.83 56.04±1.39 6.15±1.24
𝑥𝑇 + Noise 58.75±4.74 14.81±3.42 59.27±2.59 7.62±0.76

Table 5: Accuracies (mean±standard deviation, in percentage) of next activity prediction, user identification and task recognition
on ACTIVITY and EMAKI datasets. The original training set size was first reduced to 5% to simulate data scarcity and then
augmented back to 100% by altering the stochastic representation 𝑥𝑇 and six baselines: duplication, jittering, scaling, rotation,
permutation and warping. The highest accuracies are shown in bold while the second-highest ones are underlined.

recorded in a restricted laboratory setting. EMAKI occupied a mid-
dle ground – an online study offering participants more freedom
than ACTIVITY but still constrained the tasks they had to perform.
Our promising results suggested DisMouse’s generalisability in cap-
turing mouse movement behaviour patterns. By freezing the model
for evaluations and applications, we provided a directly deployable
tool and lowered the barrier for interactive behaviour modelling in
HCI. Future work can explore using DisMouse on a wider range
of datasets. As deep learning continues to evolve, it will also be
interesting to investigate innovative techniques to develop more
methods to disentangle interactive behaviour.

6.3 Limitations and Future Work
In this work, DisMouse focused on disentangling user-specific in-
formation from mouse data due to its importance for personalised
interactive systems and prevalence in existing datasets. However,
mouse behaviour can also be influenced by other attributes, such
as interactive tasks and the design of UIs. Future research can ex-
plore disentangling these additional factors, or investigate deeper
into user factors to disentangle cognitive state like emotions [3],
stress [13] and attention [59]. This is challenging for machine learn-
ing in general because the space of possible factors is potentially
vast and unknown, but current XAI methods are limited to labels
provided with the datasets. Furthermore, although EMAKI offers
age, gender and personality trait labels, no prior work has studied
if the collected data is linked to these factors. Despite the chal-
lenges, entangling fine-grained factors will enable the analysis of
user behaviour in a more holistic manner and lead to more adaptive
and intelligent interactive systems. Moreover, disentangling UIs
or interactive tasks requires mouse trajectory data collected from
users performing the same task across different UIs and performing
different tasks on the same UI. However, publicly available datasets
that offered rawmouse data did not meet the above requirements re-
garding UIs and tasks [52, 66]. In contrast, those that met the above
requirements did not release raw mouse data [6, 36]. Therefore, we
call for collecting new datasets that allow the disentanglement of
these factors from raw mouse data. Another challenge of disentan-
gling UIs or tasks is to handle more complex mouse data due to

real-world tasks, dynamic UIs, or unintentional inputs. Addition-
ally, DisMouse is limited to analysing mouse movement data, thus
future research can include more mouse events such as clicks and
scrolls, and extend to disentangle multimodal representations such
as keyboard [65], gaze [59] and UIs [33, 55]. Multimodal represen-
tations would unlock the investigation of the interplay between
different modalities, provide a more comprehensive understand-
ing of user behaviour, and potentially lead to richer disentangled
representations.

7 CONCLUSION
In this work, we introduced DisMouse, a novel semi-supervised
diffusion-based method of, for the first time, learning disentangled
representations from mouse movement data. This disentanglement
contributes to the explainability of mouse behaviour modelling and
helps researchers gain a granular understanding of the underly-
ing factors influencing mouse movements. Extensive experiments
demonstrated the effectiveness of DisMouse, with the learnt rep-
resentations generalising across different datasets. Furthermore,
we showed that DisMouse unlocked various applications including
feature refinement benefiting classification tasks and controllable
generation of personalised or variable mouse movement data. More
broadly, our findings pave the way for exciting new avenues in
HCI, such as exploring similar techniques to disentangle other
types of HCI data, understanding various underlying attributes,
and building personalised, explainable and efficient user and be-
haviour modelling methods.
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A HANDCRAFTED FEATURES
Table 6 presents the 75 handcrafted features we extracted from the
mousemovement data to serve as a reference for the performance of
user identification (see Table 2), as well as next activity prediction
and task recognition (see Table 4). We opted for these specific
features because they have been widely used in a range of existing
data-driven mouse movement models.

B COMPARISONWITH EXISTING
TASK-SPECIFIC METHODS

Following [67], we implemented existing methods that were specif-
ically designed for next activity prediction, task recognition and
user identification. Table 7 shows that DisMouse representations
consistently achieved the best results across datasets and classifi-
cation tasks. This confirmed the effectiveness of the concurrent
feature refinement allowed by DisMouse.
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Statistic Description References

X and Y coordinate [15, 31]
Mean, Travel distance [1, 13–15, 47]
Median, Straight distance [14]
Maximum, X, Y, angular and total speed [1, 13–15, 31, 47]
Minimum, X, Y and total acceleration [1, 13–15, 31, 47]
Standard deviation Angle, angle difference [1, 13–15, 31, 47]

Jerk [1]
Curvature [1, 15]

Table 6: Handcrafted mouse movement features that have been commonly used in prior mouse modelling research. In our
work, we used them for user identification, next activity prediction and task recognition to compare with DisMouse.

Next Activity
Prediction

Method ACTIVITY

Features & Activities + SVM 64.15±6.41
Features & Activities + RF 65.03±3.68

Features & Activities + LSTM 73.34±3.29
𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 63.68±6.16DisMouse

𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 & Activities 83.04±3.60

Method
Task

Recognition

EMAKI

Raw + HMM 40.87±10.56
Raw + CRF 43.65±7.34

Features + NB 47.74±4.90
Features + KStar 55.72±0.83
Features + DT 63.49±2.49
Features + MLP 67.94±0.23

DisMouse 𝐸𝑛𝑜𝑛𝑢𝑠𝑒𝑟 71.24±1.81

Method User Identification

ACTIVITY EMAKI

Features + kNN 32.79±1.26 24.04±0.17
DisMouse 𝐸𝑢𝑠𝑒𝑟 51.00±1.39 37.60±0.40

Table 7: Accuracies (mean±standard deviation, in percentage) of next activity prediction, task recognition and user identification.
We followed [67] and compared DisMouse embeddings with existing methods that were particularly designed for these
tasks [5, 10–12, 14, 29, 31, 66]. The best accuracies are shown in bold.
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