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Abstract

Eye gaze is an important non-verbal cue and promising
for automatic affect analysis. We propose an appearance-
based method that, in contrast to a long line of work in
computer vision, only takes the full face image as input. Our
method encodes the face image using a convolutional neural
network with spatial weights applied on the feature maps to
flexibly suppress or enhance information in different facial
regions. Through extensive evaluation, we show that our full-
face method significantly outperforms the state of the art for
both 2D and 3D gaze estimation, achieving improvements
of up to 14.3% on MPIIGaze and 27.7% on EYEDIAP for
person-independent 3D gaze estimation. We further show
that this improvement is consistent across different illumi-
nation conditions and gaze directions and particularly pro-
nounced for the most challenging extreme head poses.

1. Introduction
A large number of works in computer vision have stud-

ied the problem of estimating human eye gaze [7] given its
importance for different applications, such as human-robot
interaction [21], affective computing [4], and social signal
processing [30]. While early methods typically required
settings in which lighting conditions or head pose could be
controlled [17, 22, 27, 31], latest appearance-based methods
using convolutional neural networks (CNN) have paved the
way for gaze estimation in everyday settings that are char-
acterised by significant amount of lighting and appearance
variation [36]. Despite these advances, previous appearance-
based methods have only used image information encoded
from one or both eyes.

Recent results by Krafka et al. indicated that a multi-
region CNN architecture that takes both eye and face im-
ages as input can benefit gaze estimation performance [13].
While, intuitively, human gaze is closely linked to eyeball
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Figure 1: Overview of the proposed full face appearance-
based gaze estimation pipeline. Our method only takes the
face image as input and performs 2D and 3D gaze estimation
using a convolutional neural network with spatial weights
applied on the feature maps.

pose and eye images should therefore be sufficient to esti-
mate gaze direction, it is indeed conceivable that especially
machine learning-based methods can leverage additional in-
formation from other facial regions. These regions could,
for example, encode head pose or illumination-specific in-
formation across larger image areas than those available in
the eye region. However, it is still an open question whether
a (more efficient and elegant) face-only approach can work,
which facial regions are most important for such a full-face
appearance-based method, and whether current deep archi-
tectures can encode the information in these regions. In
addition, the gaze estimation task in [13] was limited to a
simple 2D screen mapping and the potential of the full-face
approach for 3D gaze estimation thus remains unclear.

The goal of this work is to shed light on these questions by
providing a detailed analysis of the potential of the full-face
approach for 2D and 3D appearance-based gaze estimation
(see Figure 1). The specific contributions of this work are
two-fold. First, we propose a full-face CNN architecture
for gaze estimation that, in stark contrast to a long-standing
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tradition in gaze estimation, takes the full face image as in-
put and directly regresses to 2D or 3D gaze estimates. We
quantitatively compare our full-face method with existing
eye-only [36] and multi-region [13] methods and show that
it can achieve a person-independent 3D gaze estimation ac-
curacy of 4.8◦ on the challenging MPIIGaze dataset, thereby
improving by 14.3% over the state of the art. Second, we
propose a spatial weights mechanism to efficiently encode
information about different regions of the full face into a
standard CNN architecture. The mechanism learns spatial
weights on the activation maps of the convolutional layers,
reflecting that the information contained in different facial
regions. Through further quantitative and qualitative eval-
uations we show that the proposed spatial weights network
facilitates the learning of estimators that are robust to sig-
nificant variation in illumination conditions as well as head
pose and gaze directions available in current datasets.

2. Related Work
Our work is related to previous works on appearance-

based gaze estimation for both the 2D and 3D gaze esti-
mation task, in particular recent multi-region methods, and
means to encode spatial information in CNNs.

Appearance-Based Gaze Estimation Gaze estimation
methods are typically categorised as either model-based
or appearance-based. While model-based methods esti-
mate gaze direction using geometric models of the eyes and
face [3, 29, 34], appearance-based methods directly regress
from eye images to gaze direction. Early appearance-based
methods assumed a fixed head pose and training data for each
user [2, 27, 31]. Later works focused on pose-independent
gaze estimation either from monocular RGB [16, 26] or
depth images [5] but still required person-specific train-
ing. A promising direction to achieve pose- and person-
independence are learning-based methods but these require
large amounts of labelled training data [13, 20, 25, 36].
Consequently, recent years have seen an increasing num-
ber of gaze estimation datasets collected in everyday set-
tings [9, 19, 24], including some at large scale [13, 36],
or consisting of synthetic data [25, 32, 33]. In this work,
we also focus on this most challenging pose- and person-
independent gaze estimation task using a leave-one-person-
out cross-validation scheme.

2D vs. 3D Gaze Estimation Appearance-based gaze es-
timation methods can be further categorised depending on
whether the regression target is in 2D or 3D. Early works as-
sumed a fixed head pose of the target person [2, 27, 29, 31],
and consequently focused on the 2D gaze estimation task
where the estimator is trained to output on-screen gaze loca-
tions. While more recent methods use 3D head pose [18, 26]
or size and location of the face bounding box [13] to allow
for free head movement, they still formulate the task as a

direct mapping to 2D on-screen gaze locations. The under-
lying assumption behind these 2D approaches is that the
target screen plane is fixed in the camera coordinate system.
Therefore it does not allow for free camera movement after
training, which can be a practical limitation especially to
learning-based person-independent estimators.

In contrast, in 3D gaze estimation, the estimator is trained
to output 3D gaze directions in the camera coordinate sys-
tem [5, 16, 18, 20, 33, 36]. The 3D formulation is closely
related to pose- and person-independent training approaches,
and the most important technical challenge is how to effi-
ciently train estimators without requiring too much training
data. To facilitate model training, Sugano et al. proposed a
data normalisation technique to restrict the appearance varia-
tion into a single, normalized training space [25]. Although
it required additional technical components, such as 3D head
pose estimation, 3D methods have a technical advantage in
that they can estimate gaze locations for any target object and
camera setup. Since these two approaches handle geometry
information differently, the role of the full-face input can be
also different between 2D and 3D approaches.

Multi-Region Gaze Estimation Despite these advances,
most previous works used a single eye image as input to the
regressor and only few considered alternative approaches,
such as using two images, one of each eye [10], or a single
image covering both eyes [9]. Krafka et al. recently pre-
sented a multi-region 2D gaze estimation method that took
individual eye images, the face image, and a face grid as in-
put [13]. Their results suggested that adding the face image
can be beneficial for appearance-based gaze estimation. Our
work is first to explore the potential of using information
on the full face for both 2D and 3D appearance-based gaze
estimation. Pushing this idea forward, we further propose
the first method that learns a gaze estimator only from the
full face image in a truly end-to-end manner.

Spatial Encoding in CNNs Convolutional neural net-
works were not only successful for classification [14] but
also regression [23], including gaze estimation [36]. Several
previous works encoded spatial information more efficiently,
for example by cropping sub-regions of the image [6, 11] or
treating different regions on the image equally [8]. Tompson
et al. used a spatial dropout before the fully connected layer
to avoid overfitting during training, but the dropout extended
to the entire feature maps instead of one unit [28]. We in-
stead propose a spatial weights mechanism that encodes the
weights for the different region of full face, suppress noisy
and enhance the contribution from low activation regions.

3. Gaze Estimation Tasks
Before detailing our model architecture for full-face

appearance-based gaze estimation, we first formulate and
discuss two different gaze estimation tasks: 2D and 3D gaze



estimation. A key contribution of this work is to investigate
full-face appearance-based gaze estimation for both tasks.
This not only leads to a generic model architecture but also
provides valuable insights into the difference and benefits
gained from full-face information for both task formulations.

Although the 3D task formulation poses additional techni-
cal challenges to properly handle the complex 3D geometry,
it can be applied to different device and setups without as-
suming a fixed camera-screen relationship. This formulation
therefore is the most general and practically most relevant.
If the application scenario can afford a fixed screen posi-
tion, the 2D formulation is technically less demanding and
therefore expected to show better accuracy.

3.1. 2D Gaze Estimation

As the most straightforward strategy, the 2D gaze esti-
mation task is formulated as a regression from the input
image I to a 2-dimensional on-screen gaze location p as
p = f(I), where f is the regression function. Usually p
is directly defined in the coordinate system of the target
screen [17, 26, 27, 29] or, more generally, a virtual plane
defined in the camera coordinate system [13]. Since the
relationship between eye appearance and gaze location de-
pends on the position of the head, the regression function
usually requires 3D head poses [29] or face bounding box
locations [10, 13] in addition to eye and face images.

It is important to note that, in addition to the fixed tar-
get plane, another important assumption in this formulation
is that the input image I is always taken from the same
camera with fixed intrinsic parameters. Although no prior
work explicitly discussed this issue, trained regression func-
tions cannot be directly applied to different cameras without
proper treatment of the difference in projection models.

3.2. 3D Gaze Estimation

In contrast, the 3D gaze estimation task is formulated
as a regression from the input image I to a 3D gaze vector
g = f(I). Similarly as for the 2D case, the regression
function f typically takes the 3D head pose as an additional
input. The gaze vector g is usually defined as a unit vector
originating from a 3D reference point x such as the center
of the eye [5, 16, 18, 33, 36]. By assuming a calibrated
camera and with information on the 3D pose of the target
plane, the 3D gaze vector g can be converted by projecting
gaze location p into the camera coordinate system. The gaze
location p as in the 2D case can be obtained by intersecting
the 3D gaze vector g with the target plane.

Image Normalization To both handle different camera
parameters and address the task of cross-person training
efficiently, Sugano et al. proposed a data normalization pro-
cedure for 3D appearance-based gaze estimation [25]. The
basic idea is to apply a perspective warp to the input im-
age so that the estimation can be performed in a normalized

space with fixed camera parameters and reference point lo-
cation. Given the input image I and the location of the
reference point x, the task is to compute the conversion
matrix M = SR.

R is the inverse of the rotation matrix that rotates the
camera so that it looks at the reference point and so that
the x-axes of both the camera and head coordinate systems
become parallel. The scaling matrix S is defined so that the
reference point is located at a distance ds from the origin of
the normalized camera coordinate system.

The conversion matrix M rotates and scales any 3D
points in the input camera coordinate system to the nor-
malized coordinate system, and the same conversion can
be applied to the input image I via perspective warping us-
ing the image transformation matrix W = CsMC−1

r . Cr

is the projection matrix corresponding to the input image
obtained from a camera calibration, and Cs is another pre-
defined parameter that defines the camera projection matrix
in the normalized space.

During training, all training images I with ground-
truth gaze vectors g are normalized to or directly synthe-
sized [25, 33] in the training space, which is defined by ds
and Cs. Ground-truth gaze vectors are also normalized as
ĝ = Mg, while in practice they are further converted to
an angular representation (horizontal and vertical gaze di-
rection) assuming a unit length. At test time, test images
are normalized in the same manner and their corresponding
gaze vectors in the normalized space are estimated via re-
gression function trained in the normalized space. Estimated
gaze vectors are then transformed back to the input camera
coordinates by g = M−1ĝ.

4. Full-Face Gaze Estimation with a Spatial
Weights CNN

For both the 2D and 3D gaze estimation case, the core
challenge is to learn the regression function f . While a
large body of work has only considered the use of the eye
region for this task, we instead aim to explore the potential
of extracting information from the full face.

Our hypothesis is that other regions of the face beyond
the eyes contain valuable information for gaze estimation.

As shown in Figure 2, to this end we propose a CNN
with spatial weights (spatial weights CNN) for full-face
appearance-based 2D and 3D gaze estimation. To efficiently
use the information from full-face images, we propose to use
additional layers that learn spatial weights for the activation
of the last convolutional layer. The motivation behind this
spatial weighting is two-fold. First, there could be some
image regions that do not contribute to the gaze estimation
task such as background regions, and activations from such
regions have to be suppressed for better performance. Sec-
ond, more importantly, compared to the eye region that is
expected to always contribute to the gaze estimation perfor-
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Figure 2: Spatial weights CNN for full-face appearance-based gaze estimation. The input image is passed through multiple
convolutional layers to generate a feature tensor U . The proposed spatial weights mechanism takes U as input to generate
the weight map W , which is applied to U using element-wise multiplication. The output feature tensor V is fed into the
following fully connected layers to – depending on the task – output the final 2D or 3D gaze estimate.

mance, activations from other facial regions are expected to
subtle. The role of facial appearance is also depending on
various input-dependent conditions such as head pose, gaze
direction and illumination, and thus have to be properly en-
hanced according to the input image appearance. Although,
theoretically, such differences can be learned by a normal
network, we opted to introduce a mechanism that forces the
network more explicitly to learn and understand that different
regions of the face can have different importance for estimat-
ing gaze for a given test sample. To implement this stronger
supervision, we used the concept of the three 1× 1 convo-
lutional layers plus rectified linear unit layers from [28] as
a basis and adapted it to our full face gaze estimation task.
Specifically, instead of generating multiple heatmaps (one to
localise each body joint) we only generated a single heatmap
encoding the importance across the whole face image. We
then performed an element-wise multiplication of this weight
map with the feature map of the previous convolutional layer.
An example weight map is shown in Figure 2, averaged from
all samples from the MPIIGaze dataset.

4.1. Spatial Weights Mechanism

The proposed spatial weights mechanism includes three
additional convolutional layers with filter size 1×1 followed
by a rectified linear unit layer (see Figure 2). Given activation
tensor U of size N×H×W as input from the convolutional
layer, where N is the number of feature channels and H and
W are height and width of the output, the spatial weights
mechanism generates a H × W spatial weight matrix W .
Weighted activation maps are obtained from element-wise
multiplication of W with the original activation U with

Vc = W �Uc, (1)

where Uc is the c-th channel of U , and Vc corresponds to
the weighted activation map of the same channel. These

maps are stacked to form the weighted activation tensor V ,
and are fed into the next layer. Different from the spatial
dropout [28], the spatial weights mechanism weights the
information continuously and keeps the information from
different regions. The same weights are applied to all feature
channels, and thus the estimated weights directly correspond
to the facial region in the input image.

During training, the filter weights of the first two con-
volutional layers are initialized randomly from a Gaussian
distribution with 0 mean and 0.01, and a constant bias of 0.1.
The filter weights of the last convolutional layers are initial-
ized randomly from a Gaussian distribution with 0 mean and
0.001 variance, and a constant bias of 1.

Gradients with respect to U and W are

∂V

∂U
= ∂W , (2)

and
∂V

∂W
=

1

N

N∑
c

∂Uc. (3)

The gradient with respect to W is normalised by the total
number of the feature maps N , since the weight map W
affects all the feature maps in U equally.

4.2. Implementation Details

As the baseline CNN architecture we used AlexNet [14]
that consists of five convolutional layers and two fully con-
nected layers. We trained an additional linear regression
layer on top of the last fully connected layer to predict the
p in screen coordinates for 2D gaze estimation or normal-
ized gaze vectors ĝ for the 3D gaze estimation task. We
used the pre-training result on the LSVRC-2010 ImageNet
training set [14] to initialize the five convolution layers, and
fine-tuned the whole network on the MPIIGaze dataset [36].



The input image size of our networks was 448× 448 pixels,
which results in an activation U of size 256× 13× 13 after
the pooling layer of the 5-th convolutional layers.

For 2D gaze estimation, input face images were cropped
according to the six facial landmark locations (four eye cor-
ners and two mouth corners). While in practice this is as-
sumed to be done with face alignment methods such as [1],
in the following experiments we used dataset-provided land-
mark locations. The centroid of the six landmarks was used
as the center of the face, and a rectangle with a width of 1.5
times the maximum distance between landmarks was used as
the face bounding box. The loss function was the `1 distance
between the predicted and ground-truth gaze positions in the
target screen coordinate system.

For 3D gaze estimation, the reference point x was de-
fined as the center of 3D locations of the same six facial
landmarks. We fit the generic 3D face model provided with
MPIIGaze to the landmark locations to estimate the 3D head
pose. During image normalization, we defined ds and Cs so
that the input face image size became 448×448 pixels. In
preliminary experiments we noticed that the additional head
pose feature proposed by Zhang et al. [36] did not improve
the performance in the full-face case. In this work we there-
fore only used image features. The loss function was the `1
distance between the predicted and ground-truth gaze angle
vectors in the normalized space.

5. Evaluation
To evaluate our architecture for the 2D and 3D gaze es-

timation tasks, we conducted experiments on two current
gaze datasets: MPIIGaze [36] and EYEDIAP [19]. For the
MPIIGaze dataset, we performed a leave-one-person-out
cross-validation on all 15 participants. In order to eliminate
the error caused by face alignment, we manually annotated
the six facial landmarks for data normalization and image
cropping. In the original evaluation, there were 1,500 left
and 1,500 right eye samples randomly taken from each par-
ticipant. For a direct comparison, we obtained face images
corresponding to the same evaluation set and flipped the
face images when they came from the right eye. Our face
patch-based setting took the middle point of face (the center
of all six landmarks) as the origin of gaze direction.

For the EYEDIAP dataset, we used the screen target
session for evaluation and sampled one image per 15 frames
from four VGA videos of each participant. We used head
pose and eye centres annotations provided by the dataset
for image normalization, and reference points were set to
the midpoint of the two eye centres. The eye images were
cropped by the same way as MPIIGaze dataset. We randomly
separated the 14 participants into 5 groups and performed
5-fold cross-validation.

We compared our full-face gaze estimation method with
two state-of-the-art baselines: A single eye method [36] that
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Figure 3: Error for 2D gaze estimation on the MPIIGaze
dataset in millimetres (Euclidean error) and degrees (angular
error). The face grid was used as additional input. Error bars
indicate standard deviations.

only uses information encoded from one eye as well as a
multi-region method [13] that takes eye images, the face
image, and a face grid as input.

Single Eye One of the baseline methods is the state-of-the-
art single eye appearance-based gaze estimation method [36],
which originally used the LeNet [12, 15] architecture. For a
fair comparison, we instead used the AlexNet architecture as
our proposed model (see subsection 4.2). Eye images were
cropped by taking the center of the eye corners as the center
and with the width of 1.5 times of the distance between
corners, and resized to 60×36 pixels as proposed in [36]. In
this case, each individual eye became the input to the model,
and the reference point x was set to the middle of inner and
outer eye corners.

iTracker Since neither code nor models were available,
we re-implemented the iTracker architecture [13] according
to the description provided in the paper. Face images were
cropped in the same manner as our proposed method and
resized to 224 × 224 pixels. Eye images were cropped by
taking the middle point of the inner and outer eye corners
as the image center and with the width of 1.7 times of the
distance between the corners, and resized to 224× 224 pix-
els. For the 2D gaze estimation task, we also used the face
grid feature [13] with a size of 25× 25 pixels. The face grid
encodes the face size and location inside the original image.
For a fair comparison with our proposed architecture, we
also evaluated the model using the same AlexNet CNN ar-
chitecture as iTracker (AlexNet). To validate the effect of the
face input, we also tested the iTracker (AlexNet) architecture
only taking two eye images as Two eyes model.

5.1. 2D Gaze Estimation

Figure 3 summarises the results for the 2D gaze estima-
tion task. Each row corresponds to one method, and if not
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Figure 4: Error for 2D gaze estimation on the EYEDIAP
dataset in millimetres (Euclidean error) and degrees (angular
error). Error bars indicate standard deviations.

noted otherwise, the face grid feature was used in addition
to the image input. The left axis shows the Euclidean er-
ror between estimated and ground-truth gaze positions in
the screen coordinate system in millimetres. The right axis
shows the corresponding angular error that was approxi-
mately calculated from the camera and monitor calibration
information provided by the dataset and the same reference
position for the 3D gaze estimation task.

As can be seen from Figure 3, all methods that take full-
face information as input significantly outperformed the sin-
gle eye baseline. The single face image model achieved a
competitive result to the iTracker and the iTracker (AlexNet)
models. Performance was further improved by incorporating
the proposed spatial weights network. The proposed spatial
weights network achieved a statistically significant 7.2% per-
formance improvement (paired t-test: p < 0.01) over the
second best single face model. These findings are in gen-
eral mirrored for the EYEDIAP dataset shown in Figure 4,
while the overall performance is worse most likely due to the
lower resolution and the limited amount of training images.
Although the iTracker architecture performs worse than the
two eyes model, our proposed model still performed the best.

5.2. 3D Gaze Estimation

Figure 5 summarises the results for the 3D gaze estima-
tion task. The left axis shows the angular error that was
directly calculated from the estimated and ground-truth 3D
gaze vectors. The right axis shows the corresponding Eu-
clidean error that was approximated by intersecting the esti-
mated 3D gaze vector with the screen plane. Compared to
the 2D gaze estimation task, the performance gap between
iTracker and the single face model is larger (0.7 degrees).
Since the AlexNet-based iTracker model could achieve simi-
lar performance as the single face model, the performance
drop seems to be partly due to its network architecture. Our
proposed model achieved a significant performance improve-
ment of 14.3% (paired t-test: p < 0.01) over iTracker, and a
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Figure 5: Error for 3D gaze estimation on the MPIIGaze
dataset in degrees (angular error) and millimetres (Euclidean
error). Error bars indicate standard deviations.
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Figure 6: Error for 3D gaze estimation on the EYEDIAP
dataset in degrees (angular error) and millimetres (Euclidean
error). Error bars indicate standard deviations.

performance consistent with the 2D case.
As shown in Figure 6, the proposed model also achieved

the best performance for the 3D gaze estimation task on the
EYEDIAP dataset.

5.3. Head Pose and Facial Appearance

One natural hypothesis about why full-face input can help
the gaze estimation task is that it brings head pose informa-
tion which can be a prior for inferring gaze direction. In this
section, we provide more insights on this hypothesis by com-
paring performance using face images without eye regions
with a simple head pose-based baseline. More specifically,
using the MPIIGaze dataset, we created face images where
both eye regions were blocked with a gray box according to
the facial landmark annotation. We compared the estimation
performance using eye-blocked face images with: 1) a naive
estimator directly treating the head pose as gaze direction,
and 2) a linear regression function trained to output gaze
directions from head pose input.

Angular error of these methods for the 3D estimation task
are shown in Figure 7. While the error using eye-blocked
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Figure 8: Region importance maps and corresponding mean
face patches based on a clustering of face patches according
to illumination conditions for the MPIIGaze dataset: From
directional light on the right side of the face (left), over
frontal light (center), to directional light on the left side of
the face (right). Bar plots show the estimation error for the
two eye model (baseline) and the proposed spatial weights
CNN (ours), and the performance gain in percent in the top
right corner. Error bars indicate standard deviations.

face images was larger than the original single face architec-
ture (5.5 degrees), the performance was better than baseline
head pose-based estimators. This indicates, somewhat sur-
prisingly, that the impact of taking full-face input is larger
than head pose information, and the facial appearance itself
is beneficial for inferring gaze direction.

5.4. Importance of Different Facial Regions

To further analyse how different facial regions contribute
to the overall performance, we generated region importance
maps of the full-face model with respect to different factors
for 3D gaze estimation. As proposed in [35], region impor-

tance maps were generated by evaluating estimation error
after masking parts of the input image. Specifically, given
the 448 × 448 input face image, we used a grey-coloured
mask with a size of 64 × 64 pixels and moved this mask
over the whole image in a sliding window fashion with a 32
pixel stride. The per-image region importance maps were
obtained by smoothing the obtained 64× 64 error distribu-
tion with a box filter. The larger the resulting drop in gaze
estimation accuracy the higher the importance of that region
of the face. Individual face images and their importance
maps were then aligned by warping the whole image using
three facial landmark locations (centres of both eye corners
and mouth corners). Finally, mean face patches and mean
region importance maps were computed by averaging over
all images. To illustrate the effect of the face image input, we
compare these region importance maps with a quantitative
performance comparison between two eyes (Baseline) and
our proposed full-face model (Ours).

Illumination Conditions The original MPIIGaze paper
characterised the dataset with respect to different illumina-
tion conditions as well as gaze ranges [36]. We therefore
first explored whether and which facial regions encode infor-
mation on these illumination conditions. As in the original
paper, we used the difference in mean intensity values of
the right and left half of the face as a proxy to infer direc-
tional light. We clustered all 15× 3, 000 images according
to the illumination difference using k-means clustering, and
computed the mean face image and mean importance map
for each cluster. Figure 8 shows resulting sample region
importance maps with respect to illumination conditions. As
can be seen from the figure, under strong directional lighting
(leftmost and rightmost example), more widespread regions
around the eyes are required on the brighter side of the face.
The proposed method consistently performed better than the
two eye model over all lighting conditions.

Gaze Directions Another factor that potentially influences
the importance of different facial regions is the gaze direc-
tion. We therefore clustered images according to gaze di-
rection in the same manner as before. The top two rows of
Figure 9 show the corresponding region importance maps
depending on horizontal gaze direction while the bottom two
rows show maps depending on vertical gaze direction. As
shown, different parts of the face become important depend-
ing on the gaze direction to be inferred. The eye region is
most important if the gaze direction is straight ahead while
the model puts higher importance on other regions if the
gaze direction becomes more extreme.

Head Pose While the head pose range in MPIIGaze is
limited due to the recording setting, the EYEDIAP dataset
contains a wide head pose range.

We therefore finally clustered images in EYEDIAP ac-
cording to head pose in the same manner as before. The
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Figure 9: Region importance maps and corresponding mean
face patches based on a clustering of images according to
ground-truth horizontal (top) and vertical (bottom) gaze di-
rection for the MPIIGaze dataset. Bar plots show the estima-
tion error in the same manner as in Figure 8.

top two rows of Figure 10 show the corresponding region
importance maps depending on horizontal head pose while
the bottom two rows show maps depending on vertical head
pose. In these cases, it can be clearly seen that the full-face
input is particularly beneficial to improving estimation per-
formance for extreme head poses. Non-eye facial regions
also have in general higher importance compared to MPI-
IGaze, which indicates the benefit of using full-face input
for low-resolution images.

6. Conclusion
In this work we studied full-face appearance-based gaze

estimation and proposed a spatial weights CNN method that
leveraged information from the full face. We demonstrated
that, compared to current eye-only and multi-region methods,
our method is more robust to facial appearance variation
caused by extreme head pose and gaze directions as well
as illumination. Our method achieved an accuracy of 4.8◦

and 6.0◦ for person-independent 3D gaze estimation on the
challenging in-the-wild MPIIGaze and EYEDIAP datasets,
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Figure 10: Region importance maps based on a clustering
of images according to ground-truth horizontal (top) and
vertical (bottom) head pose for the EYEDIAP dataset. Bar
plots show the estimation error in the same manner as in
Figure 8.

respectively – a significant improvement of 14.3% and 27.7%
over the state of the art. We believe that full-face appearance-
based gaze estimation leans itself closely to related computer
vision tasks, such as face and facial feature detection, facial
expression analysis, or head pose estimation. This work
therefore points towards future learning-based methods that
address multiple of these tasks jointly.
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