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ABSTRACT
In mobile daily life settings, video-based gaze tracking faces
challenges associated with changes in lighting conditions
and artefacts in the video images caused by head and body
movements. These challenges call for the development of
new methods that are robust to such influences. In this paper
we investigate the problem of gaze estimation, more specifi-
cally how to discriminate different gaze directions from eye
images. In a 17 participant user study we record eye im-
ages for 13 different gaze directions from a standard web-
cam. We extract a total of 50 features from these images that
encode information on color, intensity and orientations. Us-
ing mRMR feature selection and a k-nearest neighbor (kNN)
classifier we show that we can estimate these gaze directions
with a mean recognition performance of 86%.
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INTRODUCTION
Eye tracking has a long history in human-computer interac-
tion (HCI) and has contributed considerably to our under-
standing of visual perception and attention. In HCI, eye
trackers have successfully been used for applications such
as gaze communication, gaze-based typing or usability stud-
ies. Despite considerable advances in tracking accuracy and
speed, most video-based eye trackers are still stationary and
restrict free movements of the user’s head and body. In ad-
dition, these systems require specialized hardware including
high resolution video cameras and infrared illumination.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PETMEI’11, September 18, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0930-1/11/09...$10.00.

The advent of mobile eye trackers promises new applications
for continuous eye tracking and analysis 24/7 [3]. Daily life
settings require compact eye trackers that are easy to setup
and use and adaptable to a particular user. For some of these
applications, e.g. for eye-based activity and context recog-
nition [4], accurate gaze tracking may not be necessary. For
the majority of applications, however, mobile eye trackers
need to provide robust methods for pupil tracking and gaze
estimation in the presence of artifacts caused by head and
body movement, ever-changing lighting conditions, as well
as occlusion from eye lashes, eyelid and glasses.

Goal and Contributions
In this paper, we propose a new method for gaze estimation
that relies on low-level image features and machine learn-
ing techniques. This approach is potentially more robust to
varying lighting conditions, head movements and requires
less computation than current approaches. The specific con-
tributions of the work are 1) the development of a set of 50
low-level image features used in computer vision research
suitable for gaze estimation, 2) a data set of eye images
recorded for different gaze positions simultaneously using
a video-based eye tracker and a standard webcam, and 3) the
evaluation of a learning method to map these image features
to different gaze directions.

Outline
We first describe related work and the experiment that we
conducted to collect the data set. We then describe the low-
level features we extracted from the raw eye images and e-
valuate a machine learning approach to map these features
to different gaze directions. We present the first results of
this evaluation and conclude with a summary and an outlook
to future work.

RELATED WORK
Model-based approaches
Model-based approaches use an explicit geometric model of
the eye to estimate gaze direction. Pupil and iris parameter-
s, orientation and ratio of the major and minor axes of the
pupil ellipse, as well as pupil-glint displacement are exam-
ples of very popular geometric eye features [8]. An example
of such system can be found in [17] which is based on the
Pupil Center Corneal Refection (PCCR) techniques. Model-
based methods can be very accurate but they typically re-
quire specialized hardware and infra-red (IR) illumination.
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These systems have performance issues in outdoors or un-
der strong ambient light. In addition, the accuracy of gaze
estimation decreases when accurate iris and pupil features
are not available, e.g. due to occlusions from eye lashes or
eyelid or due to blinking. These limitations make it hard to
apply model-based approach for gaze estimation in mobile
eye tracking.

Appearance-based approaches
Appearance-based methods can make the system less restric-
tive with cheaper and easier hardware equipment. Calibra-
tion of the cameras is typically not required as gaze map-
ping is learned directly from raw image data [8]. Baluja et
al. [1] suggested a method using a regression neural network
in which intensities of 15x30 eye images were used to map
the screen coordinates using 2000 training samples. In their
work, the eye was located by searching for the specular re-
flection of a stationary light in the image of the user’s face.
Similar neural network-based approaches can be found in
[11, 16]. The main limitation of these approaches is the fact
that they require a large set of training data. In addition, they
are computationally intensive for high resolution images as
increasing amount of hidden nodes are required in the net-
work. Hansen et al. [7] developed an eye typing system
using Markov and active appearance models. They adopted
a Gaussian process interpolation method for gaze estimation.
Williams [15] proposed a sparse, semi-supervised Gaussian
process regression method to map input image to the gaze
coordinates with partially labeled training samples. Basilio
et al. [9] developed a calibration-free eye gaze detection sys-
tem which is also based on gaussian processes. Other gaze
estimation work using appearance-based approaches based
on appearance manifolds can be found in [13, 12]. While
all of these papers investigated means to estimate gaze from
low resolution images without IR illumination, in real-world
settings their approaches face considerable challenges with
artefacts caused by head and body movements.

Eye Image Features
Image intensity provides powerful features that are widely
used in appearance-based gaze estimation methods (see [1,
11, 16, 15] for examples). Similar to intensities, the color
distribution in the eye region is different for different gaze
directions. While RGB histograms are often used to repre-
sent image color information, the RGB color system depend-
s on image characteristics. Gevers et al. [6] found that while
converting to a color invariant system such as normalized rg-
b the color model is less sensitive to illumination and object
pose. A survey by Hansen et al. [8] showed that applying
different filters on images will result in enhancing particular
image characteristics while suppressing others. Daugman et
al. [5] showed that a set of Gabor filters with different fre-
quencies and orientations can be used for iris recognition.
Williams et al. [15] applied steerable filters to the eye im-
ages for gaze estimation.

In computer vision, researchers have investigated a large va-
riety of image features for applications such as object detec-
tion and tracking or image segmentation. Common features
describe intensity and color of image pixels or are based on

Figure 1. Participant wearing the Dikablis eye tracker. The eye cam-
era was adjusted to point to the participant’s left eye. The webcam is
mounted underneath to get close-up eye images.

filter responses. These feature types have been widely used
in computer vision but haven’t been extensively explored in
eye tracking research.

EXPERIMENT
We conducted an experiment to collect a data set of natural-
istic eye images. For the sake of a later comparison we si-
multaneously collected eye images from both a video-based
eye tracker with IR illumination as well as from a standard
webcam. We collected data from 17 participants, 5 female
and 12 male, aged from 18 to 40 years (mean: 26.9 years,
std: 6.8 years) of different ethnicities and with different eye
colors. None of the participants wore glasses but two wore
contact lenses during the experiment.

Apparatus
The experimental system consisted of a webcam, a moni-
tor and the Dikablis eye tracker from Ergoneers GmbH (see
Figure 1). We used the Microdia Sonix USB 2.0 Camer-
a with a maximum frame rate of 30Hz. The webcam was
fixed on a plastic frame and mounted under the Dikablis eye
camera to capture images of the eye with sufficient resolu-
tion. The sampling rate for the Dikablis eye tracking system
was 25Hz. The resolution of the captured eye images was
640x480 for the webcam and 384x288 for the Dikablis.

Setup and Procedure
The experiment was carried out in a real office with normal
lighting conditions. Participants wearing the Dikablis head-
unit were seated at distance of approximately 60cm from a
23” 1680x1050 pixels ( 43◦ in horizontal and 27.6◦ in verti-
cal of visual angle) computer screen. Free movements of the
head and the upper body were possible, but the participants
were instructed to sit as static as possible. The visual stimu-
lus was shown on the screen as a red point with a radius of
20 pixels (0.5◦ of visual angle) on light grey background.

Images of the participants’ left eye were recorded using the
webcam and the Dikablis eye camera and labeled accord-
ing to the current gaze direction on the screen (see Figure
2 for examples). Data synchronization was handled using
the Context Recognition Network (CRN) Toolbox [2]. The
CRNT streams data (such as the frame index of webcam im-
ages, video streams from the Dikablis eye and field cameras,

10



Figure 2. Examples of recorded eye images. The images to the left are
from the webcam. The grey images in the center and the images to the
right are from the Dikablis eye and field camera, respectively. The red
point on the screen shows the point of gaze.

(a) (b)

Figure 3. Screenshot of the experimental stimulus. (a) A red point is
displayed in order at 13 different locations on the screen. It stays at
each location for 5 seconds and moves to the next location. Location
1 and 10 are spaced 10.75◦ in horizontal and 6.9◦ in vertical of visual
angle from each other. (b) The point moves horizontally, vertically and
diagonally at constant speed.

gaze coordinates in the scene image, and point labels from
the stimulus displayed on the monitor) into a single file.

The experiment consisted of two sessions. In the first ses-
sion, participants were instructed to fixate at 13 different lo-
cations indicated by the red point remaining at these loca-
tions for 5 seconds (see Figure 3(a) for an example). In the
second session, participants were asked to follow the mov-
ing point with their eyes along several predefined paths (see
Figure 3(b)). For each path the point moved horizontally,
vertically and diagonally at constant speed. Each of these
sessions was performed three times, each lasting for about 7
minutes. This resulted in a total data set of about 21 minutes.

DISCRIMINATION OF GAZE DIRECTIONS
We use an appearance-based approach for gaze estimation.
In contrast to model-based approach, we do not use explic-
it geometric features such as pupil-glint vector, the relative
position of the pupil center, or contours and eye corners. In-
stead, we represent each eye image by a vector of low-level
image features and use machine learning techniques to map
these features to different gaze directions.

Feature Extraction and Selection
We followed the work of [14] and calculated three types of
low-level features: Color (C), Intensities (I), Orientations
(O). All of these features were extracted offline using MAT-
LAB (see [14] for the saliency toolbox we used).
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Figure 4. An example of mapping raw image data to the gaze point.
Input image I is converted to a feature vector f. f includes 50 features
that carry information on color, intensities and orientations. A subset
of these features is selected using mRMR. Finally, the feature vector f
is classified into different gaze locations L using a kNN classifier.

As illustrated in Figure 4, the raw input image denoted with
I is processed in three feature extraction steps: fC extract-
s the red-green (RG) and blue-yellow (BY) color opponen-
cies; fI extracts the grey scale intensities, i.e. intensity is
computed as the average of r, g, b values in the color image
for each pixel; fO obtains local orientations information by
convolving the intensity image with a set of Gabor filters in
four different orientations {0◦,45◦,90◦,135◦}. The complete
feature vector fC,I,O is then calculated by:

fC,I,O =
1

3
(fC + fI + fO) (1)

Input to the saliency toolbox was the 640x480 color image
I from the webcam. The toolbox generated three 30x40 fea-
ture maps denoting color, intensities and orientations respec-
tively (see [14] for details on how these feature maps were
generated). Accordingly, as shown in Figure 4, the image
is represented respectively by a 1200-component vector in
each individual feature space fK (K ∈ {C, I,O}). The
resulting feature vector fC,I,O = [x1, x2, x3, ..., x1200] is
obtained by averaging them. To yield a fast and efficient
mapping, a feature selection procedure is followed instead
of directly using the feature vector by the learning algorith-
m. Finally, we use mRMR (minimum Redundancy Maxi-
mum Relevance) feature selection to reduce the high dimen-
sional image data I into a low dimensional feature vector
f = [x1, x2, x3, ..., x50] (see [10] for details on mRMR).

Classification
We evaluated 13 different gaze locations; each location was
assigned a unique label l ∈ L = {1, 2, 3, ..., 13}. For this
first analysis, we only used the webcam images from the
17 participants. For each participant, approximately 1900
images were collected. We evaluated our system using a
person-dependent evaluation scheme. For each participan-
t, 70% of the images were randomly selected and used for
training (the training set), the remaining 30% were used for
testing on the same participant (the test set).

The training set comprised N observations of raw eye im-
ages I and labeled with the corresponding observations of
gaze directions Y . We can then use a k-nearest neighbor
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Feature P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17
C,I,O 17.3% 11.3% 17.1% 13.5% 9.1% 17.1% 11.3% 10.6% 14.9% 16% 10.3% 26.1% 21.1% 9.5% 12.1% 17.3% 17.6%

C 17.0% 11.6% 16.0% 14.7% 9.5% 15.7% 11.3% 10.7% 14.6% 17.5% 13.8% 26.7% 21.8% 10.6% 11.3% 20.5% 18.6%
I 17.9% 12.2% 16.8% 14.3% 10.5% 16.2% 10.6% 11.4% 13.8% 14.7% 9.4% 27.2% 19.4% 9.1% 11.5% 17.6% 17.5%
O 17.2% 11.1% 17% 12% 10.2% 15.8% 11.1% 13.8% 14.1% 15% 9.5% 25.9% 19.5% 9.5% 10.9% 16.4% 15.9%

Table 1. Person-dependent evaluation: this table presents the error rates for 17 participants using different features (C: color, I: intensity, O:
orientations). The participants consist of 5 females and 12 males, aged from 18 to 40 years (mean: 26.9, std: 6.8) old with different ethnicities and eye
colors. None of the participants wore glasses but two wore contact lenses during the experiment.
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Figure 5. Mean error rates with standard deviation for 17 participants
using different features (C: color, I: intensity, O: orientations)
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Figure 6. Confusion matrix of the gaze estimation results for partici-
pant 12 using color, intensity and orientation features combined.

classifier (kNN) with k = 3 to learn the mapping W from
image features f to gaze direction y.

W : f → y (2)

RESULTS
We assessed the classification performance by using differ-
ent types of image features: Color, Intensity, Orientations
and three of them combined. Figure 5 shows the mean error
rates with standard deviation averaged across all 17 partici-
pants. Using orientations only results in the lowest mean er-
ror rate of 14%. Table 1 presents the error rates for each par-
ticipant. The error rates are between 9.1% to 21.8%, except
for participant 12 who showed error rates of up to 27.2%.

We then analyzed the results for participant 12 in more de-
tail. Figure 6 shows the confusion matrix of the gaze esti-
mation results for participant 12 using color, intensity and
orientation features combined. As can be seen from the Fig-
ure 6, the predicted class does not match the actual class in
several cases, particularly for class one (C1), which corre-
sponds to the upper left gaze location.

Discussion
Overall, we achieved a mean recognition performance of
86% using color, intensity and orientation features. This
result is very encouraging given that our data set includes
blinks, changes in lighting conditions and subtle head move-
ments. As can be seen from Table 1 and Figure 6 recogni-
tion performance for participant 12 was worse compared to
the other participants. In the post-experiment analysis of the
videos we found that participant 12 blinked very frequent-
ly during the data recording, which may have affected the
recognition performance. In addition, the left upper gaze
location was particularly bad. This suggests that the partici-
pant was slow to jump to the first starting gaze location with
his eyes after each break (a black cross marker was displayed
on screen center during the break) during the experiments.

The comparison of the different features revealed that no s-
ingle feature performed best. Figure 5 shows that combin-
ing color, intensity and orientation information does not im-
prove the overall recognition performance. Table 1 shows
performance differs across participants. While combining
all three features improves recognition performance in most
cases, for some it even results in an increase of the error rate.

The recognition system makes mistakes when two classes
are spatially close to each other. The system accuracy and
precision could be improved either by adding more screen
points in the training process or by interpolating between
training points using continuous regression methods. In ad-
dition, at the moment the classifier only assigns one class la-
bel to each testing instance. Assigning a confidence as well
would allow us to use probabilistic models.

In mobile settings, other challenge are changes in the ge-
ometry relationship between the actual plane of visual gaze.
To address this issue, in future work we plan to include pri-
or geometric information in the learning process. We also
plan to include other features such as scale-invariant feature
transform (SIFT) features, Haar-like features and different
color models for gaze estimation. We also plan to improve
the feature selection procedure to derive optimal feature sets
for different mobile eye tracking applications.
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CONCLUSION
In this paper we proposed to use low-level features extracted
from eye images for gaze estimation. This initial evaluation
has shown that 13 different gaze directions can be robustly
discriminated from each other. These results are encourag-
ing and suggest that it is feasible to use a machine learning
approach and low-level features for the development of more
robust gaze estimation techniques. Our work has the poten-
tial for developing ideal eye tracker for applications such as
mobile health monitoring, eye-based input control and re-
mote gaze communication. For the future work, we need
to consider how to obtain 3D Point-of-View when the head
moves dynamically.
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