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Figure 1: Ground truth (GT) human pose at future one second and multiple pose predictions generated by different methods on the GIMO
dataset [ZYM∗22] with the lowest error prediction boxed in green and implausible cases marked in red. Our method can generate multiple
reasonable motions while other methods produce some implausible predictions.

Abstract
Human motion prediction is important for many virtual and augmented reality (VR/AR) applications such as collision avoidance
and realistic avatar generation. Existing methods have synthesised body motion only from observed past motion, despite the fact
that human eye gaze is known to correlate strongly with body movements and is readily available in recent VR/AR headsets.
We present GazeMoDiff – a novel gaze-guided denoising diffusion model to generate stochastic human motions. Our method
first uses a gaze encoder and a motion encoder to extract the gaze and motion features respectively, then employs a graph
attention network to fuse these features, and finally injects the gaze-motion features into a noise prediction network via a
cross-attention mechanism to progressively generate multiple reasonable human motions in the future. Extensive experiments on
the MoGaze and GIMO datasets demonstrate that our method outperforms the state-of-the-art methods by a large margin in
terms of multi-modal final displacement error (17.3% on MoGaze and 13.3% on GIMO). We further conducted a human study
(N=21) and validated that the motions generated by our method were perceived as both more precise and more realistic than
those of prior methods. Taken together, these results reveal the significant information content available in eye gaze for stochastic
human motion prediction as well as the effectiveness of our method in exploiting this information.
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1. Introduction

Generating realistic human body movements is a key research
challenge in the area of virtual and augmented reality (VR/AR)
and is the basis for safe, smooth, and immersive human-
environment [DJPZ∗21, SPW∗18] and human-human interac-
tions [KALL17, Hol12]. Human motion prediction (HMP) enables
a number of exciting applications such as redirected walking to
create the illusion of unlimited virtual interaction spaces [AGBS16,
SPW∗18] or to steer users away from physical boundaries, such as
walls, and thus avoid collisions [GIWW21, ZYM∗22]. Human mo-
tion prediction can also provide users with a low-latency experience
by preparing VR content in advance based on the predicted future
human poses [HZBD19, CWL∗22] and it has been used to generate
human-like motions for virtual agents to enhance the interaction
experience [BRB∗21, DKP∗23].

Previous work on HMP has typically generated human mo-
tions in a deterministic way, i.e. by producing only a single pre-
diction at a time [MBR17, BBKK17, CGM∗20, GMK∗19]. Re-
cently, in light of the fact that human motion is stochastic by na-
ture [CZL∗23, BEP22], researchers have turned to stochastic human
motion prediction, i.e. generating multiple reasonable human mo-
tions at a time [CZL∗23, YK20, BEP22, BKL18]. Stochastic human
motion prediction suits the needs of many VR applications. For
example, to minimise the collision risk in a virtual environment, it
is necessary to consider multiple possible future trajectories to warn
the users. To produce realistic virtual agents, it is also beneficial to
synthesise multiple reasonable human motions that users can peruse
and select from according to their personal preferences. However,
existing stochastic HMP methods typically generate human motions
using only past observed motions and neglect other modalities, in
particular human eye gaze. With rapid advances in eye tracking
technology, human eye gaze information has become readily avail-
able in many VR/AR head mounted displays (HMDs), such as HTC
Vive Pro Eye, Varjo VR-3, and Vision Pro, and has demonstrated its
potential for gaze-based interaction [SG19b] and gaze-contingent
rendering [HZL∗19, HLZ∗20] in VR/AR. In addition, a large body
of work in the cognitive sciences and human-centred computing
has shown that human body movements are closely coordinated
with human gaze behaviour [HBLW21a, HBLW21b, SG19a, Fre08].
Despite this close coordination, information on eye gaze has not
been used for stochastic human motion prediction so far.

To address this limitation we propose GazeMoDiff – the first
Gaze-guided human Motion Diffusion model to generate multiple
reasonable human motions. Our method first uses a 1D convolu-
tional neural network (1D CNN) and a graph attention network
(GAT) to extract features from eye gaze and body motion respec-
tively, then employs a spatio-temporal graph attention network to
fuse these features, and finally injects the gaze-motion features
into a noise prediction network via a cross-attention mechanism
to generate multiple reasonable human future motions through a
progressive denoising process. We extensively evaluate our method
on the MoGaze dataset [KBM∗20] for real-world settings as well
as on the GIMO dataset [ZYM∗22] for AR settings. Experimental
results demonstrate that our method significantly outperforms the
state-of-the-art methods that only use past body poses, achieving an
improvement of 16.7% on MoGaze and 10.8% on GIMO in multi-

modal average displacement error and 17.3% on MoGaze and 13.3%
on GIMO in multi-modal final displacement error. To evaluate our
method comprehensively, we further conducted a user study and
the responses from 21 users validated that the motions generated by
our method are perceived as both more precise and more realistic
than predictions of prior methods. The full source code and trained
models are available at zhiminghu.net/yan24_gazemodiff.

The main contributions of our work are three-fold:

• We propose a novel gaze-guided diffusion model for stochastic
human motion prediction that uses a spatio-temporal graph atten-
tion network to fuse the gaze and motion features and then injects
these features into a noise prediction network via a cross-attention
mechanism to generate multiple reasonable human motions in the
future.

• We conduct extensive experiments on two public datasets for both
real-world and AR settings and demonstrate significant perfor-
mance improvements over state-of-the-art methods.

• We report a user study that shows the motions generated by our
method are perceived as more precise and more realistic than
those from prior methods.

2. Related Work

2.1. Human Motion Prediction

Human motion prediction is a fundamental research topic in virtual
and augmented reality. Early studies commonly considered HMP
as a deterministic sequence prediction task, tackling it with recur-
rent neural network (RNN) [MBR17, GSAH17, LZX∗17, FLFM15],
graph neural network (GNN) [LCPW21, LCZ∗21, HYH∗24] and
Transformers [AKCH21, MGVO21]. Noticing that human body
motions are inherently stochastic, recent works began to predict
human motions in a stochastic way using generative models such
as variational autoencoder (VAE) [ASP∗21, MLS21], generative
adversarial network (GAN) [KGB19,BKL18,JZJ∗20], and Flow net-
works [YK20]. These methods can generate diverse human motions
through a diversity-aware loss or sampling strategy [MLS21,YK20],
but their predictions are not physically plausible. Inspired by the
recent success of denoising diffusion models in the field of image
generation [HJA20, RDN∗22, NDR∗21, ZA23], researchers have
adopted diffusion models to the task of stochastic human motion
prediction and have achieved more realistic predictions than tradi-
tional generative approaches [BEP22, CZL∗23]. However, existing
methods only generate future motion predictions based on observed
past motion, neglecting the fact that human eye gaze is known to
correlate strongly with body movements and is readily available in
recent VR/AR headsets. To fill this gap, in this work we propose
the first gaze-guided diffusion model for stochastic human motion
prediction.

2.2. Correlations between Eye Gaze and Body Motion

Intuitively, a period of human eye gaze information seems related
to human intention [KN18], which can drive future motion trends.
Extensive works in cognitive science and human-centred comput-
ing have also demonstrated this strong correlation between human
eye gaze and subsequent body motion. Some researchers have re-
vealed that in many everyday activities, such as free viewing or
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Figure 2: Diffusion process and reversed process in DDPM.

object searching, human head movements are closely associated
with eye movements [ZS82,HZL∗19,KYK∗20,HXSB24]. Emery et
al. further explored the coordination of human eye, hand, and head
movements in virtual environments and leveraged this coordination
to improve the performance of gaze estimation [EZW∗21]. Siden-
mark et al. identified the coordinated movements between eye, head,
and torso during gaze shifts in virtual reality [SMG∗20, SG19a].
Despite the strong link between human eye gaze and body motion,
prior work has only explored to use eye gaze to filter information
from the full 3D scene environment and then employed the scene
features for deterministic human motion prediction [ZYM∗22]. We
are the first to directly leverage eye gaze information (without re-
quiring information about the full 3D environment) to further boost
the performance of stochastic human motion prediction.

2.3. Denoising Diffusion Models

Denoising diffusion models, or more precisely, denoising diffusion
probabilistic models (DDPM) [HJA20, SME20, DN21, RBL∗22] are
a group of the most ingenious generative models. They aim to model
reversing a Markov chain of the diffusion process illustrated in Fig-
ure 2. During training, noisy samples are obtained by incrementally
adding noise to raw samples. The DDPM model then progressively
reverses the diffusion process by predicting noise and denoising
the samples. The loss is computed as the difference between the
predicted noise and the Gaussian noise added during the diffusion
process. In the inference stage, given a well-trained DDPM, it can
generate realistic motions from a Gaussian distribution via the re-
versed diffusion process.

Owing to their power of generating realistic and high-quality
samples, diffusion models have been applied in image/video genera-
tion [RBL∗22, HSG∗22], anomaly detection [WLSW22], objection
detection [CSSL22], 3D reconstruction [XWC∗22], time series fore-
casting [RSSV21] and imputation [TSSE21]. In a similar context,
Tevet et al. [TRG∗22] proposed a text-driven human motion synthe-
sis method with diffusion models. Recently, Barquero et al. [BEP22]
utilised a latent diffusion model to sample the diverse behaviour
code to predict stochastic motions. Chen et al. [CZL∗23] presented

an end-to-end motion prediction framework based on diffusion mod-
els without complicated loss constraints and training processes.
However, existing methods usually produce unrealistic predictions,
probably because they only focus on past human poses and neglect
important information from other modalities. To address this limi-
tation, our method injects gaze-motion features into the denoising
step through a cross-modal attention mechanism to generate more
reasonable motion predictions.

3. GazeMoDiff Model

Our diffusion model for gaze-guided stochastic human motion pre-
diction takes past body poses and eye gaze information as input.
We represent human pose p ∈ R j×3 using the 3D positions of all
human joints, where j denotes the number of human joints. Eye
gaze g ∈ R1×3 is defined as a unit direction vector. Given H frames
of observed sequence x = [(g1, p1),(g2, p2), ...,(gH , pH)], our goal
is to predict human motions in the future F frames. Considering
the stochastic nature of human motion, we generate k different
future motion trajectories to provide multiple reasonable predic-
tions P = {p0,p1, ...,pk}, where pi = [pH+1, pH+2, ..., pH+F ]. An
overview of our model is shown in Figure 3. Our model consists of
three modules: a gaze-motion feature extraction module that uses
a gaze encoder and a motion encoder to extract gaze and motion
features respectively, a gaze-motion feature fusion module that fuses
the gaze-motion features using a spatio-temporal graph attention
network, as well as a diffusion-based motion generation module that
employs a cross-attention mechanism to inject the gaze-motion fea-
tures into a noise prediction network to generate multiple reasonable
human future motions through progressive denoising.

3.1. Gaze-motion Feature Extraction

3.1.1. Gaze Encoder

We first pad raw observed gaze data Graw ∈ R3×1×H to full-
length gaze data G ∈ R3×1×(H+F) following prior work [CZL∗23].
We then employed an approximate discrete cosine transform
(DCT) [MLS21] that selected the first L components to process
the full-length gaze data G ∈ R3×1×(H+F). By leveraging this trans-
formation, the time dimension of eye gaze signals was reduced from
H +F to L, which both improved the smoothness of generation and
reduced computational complexity [MLSL19]. We further employed
a 1D convolutional neural network as an encoder to extract features
from the transformed eye gaze sequence Gdct ∈ R3×1×L. Specifi-
cally, we used four CNN layers with the kernel size of three. The
channel size of the first three layers is 32 and each layer is followed
by a layer normalisation (LN) and a Tanh activation function. After
the three CNN layers, we employed an extra CNN layer with three
channels and a Tanh activation function to obtain the final eye gaze
feature fgaze ∈ R3×1×L.

3.1.2. Motion Encoder

Recent works have demonstrated that a graph structure is particularly
effective for learning inherent correlations between human body
joints [LCPW21, LCZ∗21, MNL∗22]. Inspired by these works, we
treated human motions as a fully-connected spatio-temporal graph
P ∈ R3× j×(H+F), where later F frames of poses were padded with

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



4 of 12 Haodong Yan & Zhiming Hu& Syn Schmitt& Andreas Bulling / GazeMoDiff: Gaze-guided Diffusion Model for Stochastic Human Motion Prediction

Gdct fgaze

Gaze Encoder

Motion Encoder

Pdct fmotion

Start GAT
 Block

Middle GAT
 Block

End GAT
 Block

DCT Gaze 
Encoder

Motion 
Encoder

DCT

×4 

iDCT

Prediction
(0,1)N 

×8 

Cross-Att

Self-Att

M
LP

Denoising

×100 steps

Gaze-motion 
Feature Extraction

Gaze-motion 
Feature Fusion

Diffusion-based Motion Generation

Random 
Mask

Observation

Start GAT 
Block

M
iddle 

G
AT Block

End G
AT 

Block

Figure 3: Overview of the proposed method GazeMoDiff. GazeMoDiff first uses a gaze encoder and a motion encoder to extract the gaze and
motion features respectively, then employs a spatio-temporal graph attention network to fuse these features, and finally injects the gaze-motion
features into a noise prediction network via a cross-attention mechanism to generate multiple reasonable human future motions through a
progressive denoising process.

the last observed frame. Similarly, we employed DCT to obtain
the transformed spatio-temporal graph Pdct ∈ R3× j×L for smoother
generation and lower computational complexity. We designed a GAT-
based motion encoder to model the spatio-temporal correlations
in the motion sequence for extracting motion features fmotion ∈
R3× j×L. The motion encoder consisted of three GAT blocks i.e. a
start GAT block, a middle GAT block, and an end GAT block.

Start GAT Block. Given the transformed spatio-temporal graph
Pdct ∈ R3× j×L, we first enhance the features using a multi-head
self-attention mechanism via the temporal GAT layerand obtained
H ′ = [h′1,h

′
2, ...,h

′
L] ∈ R3× j×L in the following way:

h′i = LeakyReLU

(
1

Nhead

Nhead

∑
n=1

L

∑
k=1

α
n
ikhk

)
, (1)

where h′i ∈ R3× j is the output feature of node i, hk is the input
feature of node k, and Nhead = 8 denotes the number of heads for
attention. We fused different output features from each head by
averaging them. For each head, the attention matrix αn

ik represents
interactions between each timestamp, calculated as follows:

α
n
ik =

exp(LeakyReLU(an [hi ⊕hk]))

∑
T
l=1 exp(LeakyReLU(an [hi ⊕hl ]))

, (2)

where an is a parameter vector ∈ R6· j×1 and ⊕ denotes concatena-
tion operation.

A linear layer was then used to transfer feature dimension from
H ′ ∈ R3× j×L to H̄ ′ ∈ R16× j×L.We further proposed a spatial graph
attention network layer to extract features between different joints

and obtain the output of the start GAT block Hsta ∈R16× j×L. Specif-
ically, the spatial GAT layer was similar to the temporal GAT layer
, differing primarily in how attention coefficients were computed.
Rather than extracting features in the temporal dimension as in the
temporal GAT, the spatial GAT extracts features across the spatial
dimension.

Middle GAT Block. We designed a middle GAT block to further
extract the body pose features. Taking the output of the Start GAT
block Hsta ∈ R16× j×L as input, we first duplicated the temporal fea-
tures for enhancement [MNL∗22]

(
R16× j×L → R16× j×2L). Then

we used a temporal GAT layer, a linear layer, and a spatial GAT
layer to further learn correlations between joints and extract features.
Note that the input and output dimensions of the linear layer in
the middle GAT block are both 16. Then a layer normalisation, a
Tanh activation function, and a dropout layer with 0.3 dropout rate
was used after the spatial GAT layer to avoid overfitting. A skip
connection was added to improve the network flow. To keep the
temporal dimension of the original input to this block the same, the
middle GAT block’s output fmid was divided in half in the temporal
dimension

(
R16× j×2L → R16× j×L).

End GAT Block. The end GAT block was used to obtain the final
motion features with the same feature dimension in gaze features
fgaze for further fusion. This block consists of a temporal GAT, a
linear layer (reducing feature dimension from 16 to 3), a spatial
GAT, a layer normalisation (LN), a Tanh activation function, and a
dropout layer with 0.3 dropout rate. Given fmid ∈ R16× j×L, the end
GAT block outputs fmotion ∈ R3× j×L.

© 2024 Eurographics - The European Association
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3.2. Gaze-motion Feature Fusion

To fuse gaze and motion features, we treated gaze and motion fea-
tures as “virtual joints” and combined gaze and poses together as
a fully connected graph fin ∈ R3×( j+1)×L. Then a similar spatio-
temporal GAT was employed to fuse gaze and motion features.

The gaze-motion fusion module was composed of a start GAT
block, four middle GAT blocks, and an end GAT block. The struc-
tures of those blocks are the same as the blocks in the motion encoder.
The gaze-motion features f f us ∈ R3×( j+1)×L were calculated as:

f f us = GazePoseFuse( fin) . (3)

3.3. Diffusion-based Motion Generation

We formulated the motion generation task as an inverse diffusion
process, which contains iterative noise prediction and denoising
steps.

Noise prediction. Inspired by text-driven noise prediction net-
work [ZCP∗22], we designed a noise prediction network ϵθ that
employed the cross attention mechanism to guide the denoising
process using the gaze-motion features. This network is developed
to predict the noise at the current time step given the gaze-motion
features f f us and noisy motion sequence Y t ∈ R3×( j+1)×L from
the previous time step. As illustrated in Figure 3, ϵθ consists of n
stacked self-attention block, cross-attention block and multi-layer
perception (MLP) block with skip connections.Additionally, to trade
off diversity and realism of predictions, we train our model using
classifier-free guidance [HS22]. Specifically, the model predicted
noises from both conditional and unconditional prior by randomly
setting c = None for 10% possibility and c = f f us for 90% possibil-
ity. The predicted noise at time step t is formulated as follows:

ϵ̄= ϵθ

(
Y t ,c, t

)
. (4)

To better model the temporal correlations within the noisy gaze-
motion sequence Y t ∈ R3×( j+1)×L, we first employed a linear trans-
formation to project the sequence into a higher-dimension latent
space Y ′t ∈ R3×( j+1)×L′

. We then applied an efficient self-attention
block [ZCP∗22] to further model temporal correlations between
each frame, Y = self-att(Y ′t)+Y ′t

We then applied a step hint module to inform about how many
steps of noise have been added thus far. We first obtained the
timestep embedding et using position embedding [VSP∗17]. The
gaze-motion historical features c were also fused with a learned lin-
ear projection of the timestep embedding, e = et +W′c. This fused
embedding e was then injected into the output of the self-attention
block, Y′ = step-hint(Y,e).

To incorporate the historical gaze-motion features f f us and lever-
age their impact on noise prediction, we utilised cross-attention
blocks. These blocks enable a deeper exploration of how the histor-
ical features influence the noise predictions at different denoising
steps. In addition, computing the contributions of different attention
heads in parallel better integrates information from both modalities
(gaze and motion). Potentially, the noisy motions can also provide
feedback to update c, leading to a collaborative learning process. In
the cross-attention block, Qc and Vc were calculated by gaze-motion

historical features c while Kc was calculated using the output of
self-attention blocks Y′. The output of the cross-attention block was
calculated as follows:

Yc = Dropout
(

softmax(Qc)softmax
(

K⊤
c

))
LN(Vc)+Y′. (5)

Qc = W′
qc,Kc = W′

kY′,Vc = W′
vc. (6)

Finally, we employed a two-layer MLP with GELU activation
function and a dropout layer with 0.2 dropout rate to further extract
features. A linear layer was added at the end to align with the noise
dimension.

In our implementation, the noise prediction network contained
four self-attention blocks, four cross-attention blocks, and four MLP
blocks. Each attention operation used eight attention heads. The
timestep embedding dimension and the latent space dimension were
both set to 512.

Denoising. In a vanilla approach, the denoised sequence was gen-
erated directly from the Gaussian noise input. However, due to the
accumulation of prediction noise errors, the observation information
in the padded sequence is far from the truth in the latter steps. In
each denoising step, the observed sequence was also available to
guide the generation in the original space. Thus, we employed an
ingenious prediction mask mechanism [CZL∗23] to obtain denoised
motions p̄ ∈ R3× j×F progressively. The detailed denoising process
is illustrated in the supplementary material.

3.4. Training

In the training stage, the observation and prediction sequences are
both available. Thus, we trained the model on the full-motion se-
quence X f ull ∈ R3×( j+1)×(H+F) . First, we also transferred X f ull

into the DCT space Y f ull ∈ R3×( j+1)×L. We then added noise to
Y f ull to generate a noisy sequence Y t

f ull . Then we predicted the
noise through Equation 4.

We then optimised all parameters in our pipeline by minimising
the l2 loss between the predicted noise ϵθ (Y t ,c, t) and the true noise
ϵ:

L = Eϵ,t

[∥∥∥ϵ− ϵθ

(
Y t

f ull ,c, t
)∥∥∥2

]
. (7)

The detailed training and inference procedure is illustrated in the
supplementary material.

4. Experiments

4.1. Datasets

Only a limited number of datasets contain synchronised recordings
of both eye gaze and full-body human motion. We evaluated our
method on two such public datasets, i.e. the MoGaze [KBM∗20]
dataset for real-world setting and the GIMO [ZYM∗22] dataset for
AR setting.

MoGaze. The MoGaze dataset provides motion capture and eye-
tracking data recorded simultaneously from 6 participants perform-
ing pick and place actions in an indoor environment. It contains
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over 3 hours of body movement and eye gaze recordings captured
at 30 Hz. The pose of the human body is expressed using the 3D
coordinates of 21 body joints while the eye gaze is represented as a
direction vector. Following common settings in stochastic human
motion prediction [CZL∗23, BEP22, YK20], we used recordings
from p1, p2, p4, p5, and p6 for training and employed the data
from p7 for testing.

GIMO. The GIMO dataset contains body motion and eye
gaze data captured from 11 participants in various indoor AR
environments. The action categories include sitting or laying on
ob jects, touching, holding, reaching to ob jects, opening, pushing,
trans f erring, throwing, swapping ob jects, etc. We represented the
body pose in the GIMO dataset using the 3D coordinates of 23
body joints and denoted the eye gaze using a direction vector. In the
evaluation process, we followed the official dataset splits provided
in GIMO [ZYM∗22]. The training set comprises motion and eye
gaze recordings from 12 scenes, while the test set contains data from
14 scenes, including 12 known environments and 2 new, unseen
environments. This evaluation protocol allows the assessment of
generalisation capabilities to new scenes.

4.2. Evaluation Metrics

To evaluate the performance of our model, we employed four
commonly used metrics following prior works on stochastic
HMP [YK20, SRM∗23, CZL∗23]:

• Average displacement error (ADE): ADE measures the average
l2 distance between the ground truth and the predicted motions
over the whole future sequence. The lower the ADE, the more
precise the prediction.

• Final displacement error (FDE): FDE calculates the l2 distance
between the ground truth and the predicted future motions at the
final timestep. The lower the FDE, the more precise the prediction
at the final timestep.

• Multi-modal average displacement error (MMADE): MMADE is
designed to handle the multi-modal nature of the predictions in the
task of stochastic HMP. It takes into account the fact that there can
be multiple reasonable ground truth sequences for a given input.
The multiple ground truth is obtained from the future motions of
similar observed sequences (Sequences with l2 distance below
a given threshold are treated as similar sequences). MMADE is
the mean value of the ADE calculated using the predictions and
the multiple ground truth. The lower the MMADE, the better the
ability to generate multiple reasonable predictions.

• Multi-modal final displacement error (MMFDE): MMFDE is
calculated in a similar way as MMADE. The difference is
that MMADE calculates the average l2 distance over all future
timesteps while MMFDE measures the l2 distance only at the
final timestep. The lower the MMFDE, the better the ability to
generate multiple reasonable predictions at the final timestep.

4.3. Baselines

We compared our method with the following state-of-the-art meth-
ods in stochastic human motion prediction:

• DLow [YK20]: DLow is a latent flow-based model to generate

multiple future motions via diversity-promoting sampling and
loss.

• CVAE [YK20]: CVAE is a conditional variational autoencoder
utilised in DLow [YK20] as a pre-trained generative model which
can also forecast stochastic future motions.

• BeLFusion [BEP22]: BeLFusion is a latent diffusion-based model
to predict reasonable motions based on disentangling the be-
havioural representation from past motions.

• HumanMAC [CZL∗23]: HumanMac is a diffusion-based stochas-
tic HMP model with a DCT completion fashion in the inference.

4.4. Implementation Details

We set the observation and prediction time windows to 0.5 sec-
onds (15 frames) and 2 seconds (60 frames) respectively for both
the MoGaze and GIMO datasets, following common practice in
stochastic human motion prediction [CZL∗23, BEP22, YK20]. For a
fair comparison, we retrained all the baseline methods from scratch
using their default training parameters. We trained all the modules
in our method in an end-to-end manner for 300 epochs using Adam
optimiser [KB14] with an initial learning rate of 0.0003 and a batch
size of 32. The learning rate was decayed at 75, 150, 225, 275
epochs, respectively, with a multiplicative factor of 0.9. We applied
a standard diffusion process as proposed by [SME20] that degraded
1500 steps in the training and sampled 100 steps in the inference.
We selected the Cosine noise scheduler [ND21] in the diffusion
following HumanMAC [CZL∗23]. The multi-modal ground truth
threshold was set to 0.4 following previous work [BEP22]. All ex-
periments were conducted in an Nvidia TITAN X GPU with 12GB
memory using the PyTorch 1.7.1 framework.

4.5. Quantitative Results

The quantitative results on the MoGaze [KBM∗20] and
GIMO [ZYM∗22] datasets are shown in Table 1. Overall, our model
outperforms the state-of-the-art methods on all metrics.

Results on MoGaze. As shown in Table 1, our model achieves
the lowest ADE, FDE, MMADE and MMFDE compared to prior
methods, substantially surpassing the best state-of-the-art Human-
MAC [CZL∗23]. For average displacement error, our method
achieves an improvement of 12.8% (0.638 vs. 0.732) over Human-
MAC [CZL∗23]. On final displacement error, our method obtains a
13.7% performance gain (0.939 vs. 1.089). On multi-modal accuracy
metrics, our method improves the MMADE performance by 16.7%
(0.649 vs. 0.779) and the MMFDE performance by 17.3% (0.946 vs.
1.144). The greater gains on the multi-modal metrics reveal that our
model is more capable of generating multiple reasonable predictions
aligned with the stochasticity of human nature. We further conducted
a Wilcoxon signed-rank test to compare our method and the state-of-
the-art and the results demonstrate that the differences between our
method and the state-of-the-art method are statistically significant
(p < 0.01). In addition, we also presented the performance of our
method without using eye gaze in Table 1. Compared to our method,
the ablated version of not using eye gaze presents lower accuracy
in terms of ADE, FDE, MMADE and MMFDE, demonstrating the
effectiveness of eye gaze information for stochastic human motion
prediction. It is also notable that our method without using eye gaze
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Table 1: Comparison of our method with the state-of-the-art methods on both MoGaze [KBM∗20] and GIMO [ZYM∗22] (unit: meters). The
best results are in bold while the second best are underlined.

Results on MoGaze [KBM∗20] Results on GIMO [ZYM∗22]

ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

CVAE [YK20] 1.070 1.644 1.091 1.667 1.292 2.059 1.294 2.054
DLow [YK20] 0.807 1.261 0.840 1.274 1.084 1.688 1.090 1.687
BeLFusion [BEP22] 0.899 1.306 0.908 1.313 0.840 1.220 0.845 1.221
HumanMAC [CZL∗23] 0.732 1.089 0.779 1.144 0.815 1.121 0.821 1.118

Oursw/o gaze 0.664 0.982 0.696 0.996 0.812 1.120 0.818 1.116
Ourshead 0.669 0.971 0.678 0.974 0.734 0.979 0.737 0.975
Ours 0.638 0.939 0.649 0.946 0.729 0.974 0.732 0.969

still outperforms the state-of-the-art methods, achieving an improve-
ment of 9.8% on MMADE and 12.9% on MMFDE. These results
underscore the superiority of our model architecture. Considering
that eye gaze is not always available, we further present a novel
variant that replaces gaze with head direction. We can see from
Table 1 that although this variant is not as good as our full model,
it outperforms the variant without gaze. These results demonstrate
that head direction can be a reliable alternative when gaze is not
available.

Results on GIMO. As shown in Table 1, our method outperforms
the state-of-the-art methods in all the metrics. Specifically, compared
to the state-of-the-art method HumanMAC, our method achieves
an improvement of 10.5% (0.815 to 0.729) in ADE as well as an
improvement of 13.1% (1.121 to 0.974) in FDE. On multi-modal
accuracy metrics, our method obtains an improvement of 10.8% in
MMADE and 13.3% in MMFDE, respectively. The results from a
Wilcoxon signed-rank test validate that the differences between our
method and the state-of-the-art method are statistically significant
(p < 0.01). We also find that our method significantly outperforms
the ablated version of not using eye gaze, revealing the importance
of eye gaze for generating stochastic human motions. The results of
Ourshead on GIMO also validate that eye gaze performs better than
head orientation in terms of human motion prediction and revealed
that head orientation can be used as a proxy to gaze when gaze is
not available.

4.6. Visualisation Analysis

We visualised the multiple predicted poses at the time point of the
future one second. We compared our method with the state-of-the-
art method HumanMAC [CZL∗23]. For each method, we randomly
generated 10 predictions for comparison.

Visualisation results on the MoGaze dataset. We illustrated a
representative visualisation from the MoGaze dataset [ZYM∗22]
in Figure 4. The observed motion sequence involves a turn to the
right, and the ground truth pose shows that at the future one second,
this person continues the turn by about 100 degrees further to the
right. We can observe that predictions of HumanMAC [CZL∗23]
generally continue walking in the same forward direction as the
observed last frame, failing to anticipate the full turning trajectory.
The best prediction generated by HumanMAC [CZL∗23] (labelled
in green) also differs from the ground truth. In contrast, our method
can recognise that the person intends to keep turning right. As a
result, the best prediction from our method is precisely facing the
true direction of the ground truth and other predictions generally

align with the ground truth. In addition, we can see that the poses
generated by our method are physically plausible without any angle
distortions or strange limb lengths.

Visualisation results on the GIMO dataset. We also illustrated a
typical visualisation from the GIMO dataset [ZYM∗22]. As depicted
in Figure 1, predictions from our method are more similar to the
ground truth. Furthermore, all predictions from our method are
generally realistic. In contrast, HumanMAC yielded predictions
that include some implausible cases (boxed in red). These results
demonstrate that our method can generate more reasonable motion
predictions than the state-of-the-art.

Visualisation results of not using eye gaze. To further evaluate
the effectiveness of eye gaze for stochastic human motion prediction,
we showed a visualisation example to compare our method with
the ablated version of not using eye gaze. As shown in Figure 5,
the observed motions showed a person turning to the right and then
standing still. Our method was able to predict that the person would
continue going right in the future while the ablated version of not
using eye gaze failed to recognise this intention and stayed in place.
These results demonstrate that eye gaze signals provide informa-
tion on human intention and can help improve the performance of
stochastic human motion prediction methods.

More visualisation results are provided in the supplementary
material.

4.7. Adding Eye Gaze to Prior Methods

To further evaluate our method’s effectiveness for extracting and
fusing gaze and motion features, we compared our methods with
prior methods’ variants that add eye gaze as input. The results on
MoGaze and GIMO are shown in Table 2, where Humgaze and
BeLgaze denotes the variants of HumanMAC and BeLFusion that
add eye gaze as an extra input joint. Overall, our approach outper-
forms both BeLFusion and HumanMAC which incorporate eye gaze
information in terms of all metrics, demonstrating our method’s
superiority in exploiting eye gaze information. Additionally, com-
pared to the performance of original HumanMAC and BeLFusion
shown in Table 1, all the metrics improve on the MoGaze dataset
while getting worse slightly on the GIMO dataset. It demonstrates
that simply adding eye gaze as a new joint to an existing method
does not always have a positive effect. Instead, the internal features
of the eye gaze and its synergistic correlations with other human
joint nodes need to be considered. Our approach outperforms the
state-of-the-art methods significantly by introducing novel feature

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



8 of 12 Haodong Yan & Zhiming Hu& Syn Schmitt& Andreas Bulling / GazeMoDiff: Gaze-guided Diffusion Model for Stochastic Human Motion Prediction

Multiple pose predictions at one time point (future 1 second)Observed GT

O
u

rs
H

u
m

an
M

A
C

Figure 4: Ground truth (GT) human pose at future one second and multiple pose predictions generated by different methods on the MoGaze
dataset [KBM∗20] with the best prediction (lowest l2 distance to GT) boxed in green. Our method can generate motions that are closer to the
ground truth than the state-of-the-art method HumanMAC [CZL∗23].
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Figure 5: Ground truth (GT) human pose at future one second and multiple pose predictions generated by different methods on the MoGaze
dataset [KBM∗20] with the best prediction (lowest l2 distance to GT) boxed in green. Our method using eye gaze can generate motions that
are closer to the ground truth than the ablated version of not using eye gaze.

extraction and fusion modules for gazes and motions and using the
fused features to guide future motion generation.

Table 2: Comparison of our method with baselines that add eye
gaze as input on both MoGaze [KBM∗20] and GIMO [ZYM∗22]
(unit: meters). The best results are in bold while the second best are
underlined.

Dataset Method ADE FDE MMADE MMFDE

MoGaze
Humgaze 0.654 0.965 0.679 0.980
BeLgaze 0.654 1.018 0.659 1.012
Ours 0.638 0.939 0.649 0.946

GIMO
Humgaze 0.850 1.135 0.852 1.137
BeLgaze 0.858 1.126 0.861 1.221
Ours 0.729 0.974 0.732 0.969

4.8. Ablation Study

We conducted an ablation study to comprehensively analyse the
individual contributions of various modules within our framework.
We thoroughly assessed the performance of our model by comparing
it to variants that exclude specific modules:

• Oursw/o gat : Without spatio-temporal graph attention network.
• Oursw/o CA : Without cross attention in the noise predicting net-

work.
• Oursw/o GE : Without gaze encoder.
• Oursw/o ME : Without motion encoder.

As we can see from Table 3, our model outperforms all the ab-
lated versions. It reveals that each module within our framework
significantly contributes to the generation of stochastic human future
motions.

Table 3: Ablation study on MoGaze [KBM∗20]. The best results are
in bold.

ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

Oursw/o gat 0.655 0.990 0.663 0.993
Oursw/o CA 0.697 1.001 0.709 1.000
Oursw/o GE 0.655 0.946 0.665 0.946
Oursw/o ME 0.642 0.976 0.654 0.985

Ours 0.638 0.939 0.649 0.946
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5. User Study

To perform a comprehensive evaluation of the perceived precision
and realism of the generated samples, we conducted a user study to
assess model performance based on human perception and intuition.
Participants were tasked with random samples predicted by differ-
ent motion forecasting models. By collecting subjective rankings
directly from individuals, the user study provided an intuitive ap-
proach to evaluate the aspects of the predictions that are challenging
to assess objectively, such as naturalness, continuity, and the overall
plausibility of the motions.

5.1. Assessment Details

We randomly selected 4 sequences from the MoGaze dataset and 12
sequences from the GIMO dataset. The difference in the number of
selections between the two datasets can be attributed to the differ-
ence in the variety of actions included. While the MoGaze dataset
consists of only two actions, the GIMO dataset contains a larger
number of different actions. We compared our method with the best
baseline HumanMAC. The compared conditions were randomly pro-
vided to the users in order to avoid any potential bias. Each method
generated 10 predictions from random noise. We set the sample size
to 10 for a trade-off between the predictions’ diversity and users’
burden. The participants in our study were then instructed to rank
these predictions based on the following two key aspects:

• Realism: If these poses are physically plausible. You can check if
there are any angle distortions, too short/long limbs, implausible
poses, or any sudden or unreasonable changes during the whole
motion.

• Precision: If these motions align with the ground truth. You can
measure the similarity between each motion and the ground truth.

The questionnaire utilised in our study was created using the
Jotform platform The interface of our user study can be found in the
supplementary material. A total of 21 individuals (11 males and 10
females, aged between 21 and 39 years, Mean= 26.3, SD=4.4) were
recruited to take part in our user study via university mailing lists
and social networks. This user study is approved by the university.

5.2. Evaluation

As shown in Table 4, our method outperforms HumanMAC in terms
of both precision and realism. 74.6% of the total responses consid-
ered predictions of our method as more precise while only 25.4%
regarded HumanMAC’s results as more precise. From the perspec-
tive of realism, 67.7% of the total responses considered the motions
generated by our method as more realistic than HumanMAC while
only 33.3% of the responses considered HumanMAC were able to
generate more realistic predictions. To further validate our findings,
we conducted a paired Wilcoxon signed-rank test, which revealed a
statistically significant difference (p < 0.01) between our method
and HumanMAC in terms of both precision and realism.

Table 4: Results of the user study. Participants were required to mea-
sure the predictions from different methods according to precision
and realism.

More precise More realistic

HumanMAC 25.4% 32.3%
Ours 74.6% 67.7%

6. Discussion

Our study marks a notable advancement in the emerging field of
incorporating eye gaze cues for stochastic human motion prediction
in VR/AR research. We have successfully demonstrated the effec-
tiveness of our proposed method in generating multiple reasonable
human motion predictions.

Performance of our method. Our method outperforms the state-
of-the-art methods in terms of all metrics on both the MoGaze and
GIMO datasets (See Table 1). In addition, the visualisation results
on both datasets showed that our method can generate multiple
reasonable predictions with high precision while the state-of-the-
art may produce erroneous or implausible predictions (Figure 1
and Figure 4). The results from a user study further confirmed that
the predictions generated by our method were more realistic and
more precise than that from prior method (Table 4). These results
demonstrate that our work have made a significant improvement
in stochastic human motion prediction in terms of improving both
precision and realism.

The effectiveness of eye gaze for stochastic HMP. To the best
of our knowledge, our method is the first to introduce eye gaze
in the stochastic HMP task to obtain a significant performance
improvement. Compared to the full model, the ablated version of
not using eye gaze performed significantly worse on both datasets
(Table 1). It demonstrated that introducing the historical eye gaze
as input can benefit the generation of more precise future motions.
The visualisation example further demonstrated the effectiveness of
incorporating eye gaze. As shown in Figure 5, the observed motion
showed a person turned to the right and then standing. The ground
truth pose at future one second showed the person turning right
again from a standstill. Our full model with eye gaze can predict this
intention of turning right while the ablated version of not using eye
gaze failed to recognise it and generated predictions that were all
staying in place. We argue that the eye gaze implies the intention of
future body movements. Therefore, our method can recognise more
complex and precise intentions and make reasonable and precise
predictions.

The approach to introducing gaze into stochastic HMP. Our
method showed a significant improvement in the stochastic HMP
task by adding eye gaze as input. A natural question is whether
adding eye gaze as additional input to an existing method has an
effect. In subsection 4.7 we explored existing diffusion-based meth-
ods with eye gaze as an additional joint input. The accuracy declined
slightly on the GIMO dataset (Table 2). Compared to the MoGaze
dataset, the GIMO dataset contains more complex actions and mo-
tions, and the correlation between eye gaze and future action intent
is much harder to mine. Therefore, simply adding eye gaze as an
additional joint makes it difficult to model this complex correlation.
Our method extracted the gaze and motion features via two encoders
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and fused them via GAT. Experimental results demonstrated the
effectiveness of our gaze encoder, motion encoder, as well as the
GAT (Table 3).

Diversity reduction due to eye gaze guidance. As shown in
Table 1, our model reported obvious improvements in terms of
all accuracy metrics. Intuitively, the diversity of predictions will
decrease. To further explore whether and to what extent the diversity
of our predictions were reduced, we used the average pairwise
distance (APD), i.e. the average L2 distance between every pair
of motion predictions, to measure the diversity. We observed that
when ablating eye gaze from our model, the APD value increases
from 15.572 to 15.799 on MoGaze and from 15.519 to 20.199
on GIMO. These results validate that while adding eye gaze can
improve accuracy, it inevitably decreases the diversity of the motion
predictions.

Limitations. First, only two public datasets contain both the eye
gaze and body motions, limiting our evaluation’s generalisability. In
addition, existing datasets contain limited action categories, which
make predictions that tend to be limited to a few number of actions
and can not generalise to unseen actions. . Finally, our approach uses
observed motions and eye gaze as input. However, the input data may
be missing due to tracking errors in practical applications, which
may limit the application of our method in real-world scenarios.

Future work. Our proposed approach, GazeMoDiff, has the po-
tential to be extended to incorporate additional modalities beyond
eye gaze. It serves as a multi-modal human motion prediction frame-
work, where various guidance information can be utilised to enhance
the generation of reasonable motions. By incorporating modalities
such as facial expressions, hand gestures, and physiological signals,
the GazeMoDiff framework can be expanded to capture a more
comprehensive range of cues for motion prediction. In addition,
we are also looking forward to integrating our method with real
VR/AR applications. Finally, as a diffusion-based prediction model,
our method needs 100 DDIM sampling steps to denoise and obtain
predictions, which limits to implementation into real-time scenarios.
We will try some fast sampling methods [LZB∗22a, LZB∗22b] to
improve generation speed.

7. Conclusion

In this work, we were the first to explore the effectiveness of eye
gaze on generating multiple reasonable human motions in the future.
We proposed a novel gaze-guided diffusion model that fuses the
gaze and motion features using a spatio-temporal graph attention net-
work and then injects these features into a noise prediction network
via a cross-attention mechanism to generate multiple reasonable
human future motions. Extensive experiments demonstrated that our
method outperforms the state-of-the-art methods by a large margin
and a user study validated that our method can generate motions
that are more precise and more realistic than prior methods. As
such, our work makes an important step towards generating more
realistic human motions for virtual agents and guides future work
on cross-modal human behaviour generation.
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