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Figure 1: Areas of Interest (AOIs) are used extensively in eye tracking studies, however, it is currently unknown how gaze
uncertainty impacts the resulting findings. To overcome this limitation, we study the uncertainty caused by the gaze estimation
error of the eye tracker and amplified by the nearby AOIs in information visualisations. We propose two effective metrics, the
Flipping Candidate Rate (FCR) and Hit Any AOI Rate (HAAR), to quantify the impact of uncertainty on the sample application
domain of information visualisations.

ABSTRACT
Gaze-based analysis of areas of interest (AOIs) is widely used in in-
formation visualisation research to understand how people explore
visualisations or assess the quality of visualisations concerning key
characteristics such as memorability. However, nearby AOIs in vi-
sualisations amplify the uncertainty caused by the gaze estimation
error, which strongly influences the mapping between gaze samples
or fixations and different AOIs. We contribute a novel investiga-
tion into gaze uncertainty and quantify its impact on AOI-based
analysis on visualisations using two novel metrics: the Flipping
Candidate Rate (FCR) and Hit Any AOI Rate (HAAR). Our analysis
of 40 real-world visualisations, including human gaze and AOI an-
notations, shows that gaze uncertainty frequently and significantly
impacts the analysis conducted in AOI-based studies. Moreover, we
analysed four visualisation types and found that bar and scatter
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plots are usually designed in a way that causes more uncertainty
than line and pie plots in gaze-based analysis.
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1 INTRODUCTION
Gaze-based analysis of different areas of interest (AOIs) is widely
used in information visualisation research, e.g. to understand how
people explore visualisations [Polatsek et al. 2018] or assess the
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quality of information visualisations with respect to memorabil-
ity [Borkin et al. 2015] or graphic effectiveness [Goldberg and
Helfman 2010]. On such visual stimuli, an AOI covers areas with
semantic meaning such as the axes, the title, or different graphical
elements. However, a key assumption in gaze-based AOI analy-
sis is the correct assignment of gaze samples and fixations to the
corresponding AOIs [Goldberg and Helfman 2010]. Despite recent
advancements in eye tracking hardware and methods, there is still
an inherent gaze estimation error [Ehinger et al. 2019] that causes
uncertainty in the on-screen gaze locations. In addition, visualisa-
tion characteristics such as the distance between AOIs [Yun et al.
2013] and their sizes [Orquin et al. 2016] further magnify the im-
pact of gaze estimation error on AOI analysis. Several studies have
reported this impact on gaze-based applications, e.g. it hampers the
conclusion of behavioural decision-making studies [Orquin et al.
2016] and the usability of gaze-based user interfaces [Barz et al.
2016]. To quantify this impact, Orquin and Holmqvist [2018] pro-
posed the capture rate, a statistical metric to quantify the percentage
of fixations assigned to a given AOI. The capture rate is dependent
on the size of the AOI and the accuracy of the eye tracker. Still, it
cannot provide insights into fixations that may belong to multi-
ple AOIs, and is suitable for simpler user interfaces in perceptual
studies.

Inspired by previous work on gaze-based AOI analysis, this paper
further assesses the impact of gaze uncertainty on the assignment
of fixations to AOIs in information visualisations, especially for dif-
ferent visualisation types, such as line, bar, scatter, and pie plots. In
perception studies [Orquin et al. 2016; Orquin and Holmqvist 2018],
researchers can avoid the effect of gaze uncertainty by increasing
the AOI sizes and distances between AOIs. However, AOIs in infor-
mation visualisations are usually small and close to one another.
For such stimuli, gaze uncertainty becomes crucial in analysing fix-
ations that land at the borders of possibly multiple AOIs. Moreover,
another consequence of gaze uncertainty caused by gaze estimation
error could lead to fixations areas with no semantic meaning (e.g.
white spaces) and prior research showed that such areas do not
attract human attention [Matzen et al. 2017].

In this paper, to quantify gaze uncertainty and its impact on
AOI-based analysis for information visualisations, we introduce
two novel metrics: the Flipping Candidate Rate (FCR) and the Hit
Any AOI Rate (HAAR). FCR quantifies the probability that fixations
might flip between two or more AOIs. HAAR quantifies the per-
centage of fixations that land on at least one AOI, hence capturing
the impact of gaze uncertainty when assigning fixations to AOIs.
To further understand and assess the impact of gaze uncertainty
when assigning fixations to AOIs, we artificially flipped assigned
AOIs and compared the resulting scanpaths. We calculated the Se-
quence Score [Yang et al. 2020], which is a pairwise string similarity
metric, between the original and altered scanpaths. A value lower
than 1 for the sequence score means that the altered scanpaths
are different from the original one due to different assignments of
fixations to AOIs, which could lead to potentially very different
conclusions based on the eye tracking study. The results of our
analysis suggest that gaze uncertainty has a substantial influence
on AOI-based evaluations, and bar and scatter plots are most com-
monly designed in a way that causes more uncertainty than line
and pie plots in gaze-based analysis. The contribution of our work

is two-fold: First, we analyse and demonstrate the impact of gaze
uncertainty on the assignment of fixations to AOIs for 40 real-world
information visualisations [Borkin et al. 2013]. Second, we propose
two novel metrics, the FCR and HAAR, that quantify the impact of
gaze uncertainty on AOIs.

2 RELATEDWORK
Our work is grounded on 1) gaze-based area of interest (AOI) eval-
uations of information visualisations and 2) gaze estimation error,
and it is positioned in the area of 3) uncertainty representation and
visualisation. Below, we briefly survey the literature in these fields.

Gaze-based Area of Interest Evaluation. Gaze-based AOI evalua-
tion is widely used for various kinds of visualisations, including web
pages [Drusch et al. 2014], static visualisations [Borkin et al. 2015],
and metro maps [Xie et al. 2021]. In general, it plays an important
role in connecting eye tracking and visualisation research [Burch
et al. 2017]. An overview of AOI-oriented data visualization is
provided by Blascheck et al. [2017]. The impact of AOI sizes on
decision-making studies was examined by Orquin et al. [2016], and
capture rate was proposed to quantify the uncertainty about the
amount of fixations to a given object [Orquin and Holmqvist 2018].

Gaze Estimation Error. The intrinsic gaze estimation error from
eye-tracking devices is well studied [Ehinger et al. 2019; Orquin
et al. 2016]. Zhang and Hornof [2014] focused on post-hoc error
compensation, whereas Sattar et al. [2017] added “jitter” to gaze
samples to simulate different eye trackers. For user interfaces, the
implications of the accuracy of eye tracking for design was studied
by Feit et al. [2017]. Error-aware gaze-based interfaces allow us
to compensate the gaze estimation error [Barz et al. 2016, 2018].
Furthermore, there are filtering and visual-interactive cleansing
methods to address data quality problems in eye tracking [Schulz
et al. 2015].

Uncertainty Representation and Visualisation. Dealing with un-
certainty for gaze and corresponding AOI assignments, we can
relate our work to the general problem of representing and process-
ing uncertainty. Skeels et al. [2010] provide a general discussion
of different notions of uncertainty and their role in data visualisa-
tion. According to their terminology, gaze estimation error can be
understood as uncertainty on level 1 (for measurement precision
and similar); however, the derived AOI assignment and follow-up
analysis can be seen as uncertainty on level 3 — the inference
level. Uncertainty visualisation can then use uncertainty models
to represent and analyse uncertainty. See, for example, the sem-
inal work by Pang et al. [1997] and a most recent survey on the
topic [Weiskopf 2022].

Previous literature either directly used fixations and saccades
for further analysis, or mitigated the impact of gaze uncertainty by
changing the stimuli. Given AOIs in information visualisations are
close and small, a slight change of gaze position might substantially
affect the mapping to AOIs. Thus, a fundamental investigation into
the impact of gaze estimation error in information visualisations is
necessary.
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3 GAZE UNCERTAINTY ASSESSMENT
The impact of gaze uncertainty on AOI assignment is assessed from
two perspectives: 1) the number of fixation candidates that might
flip between AOIs (FCR) and 2) the number of fixations that hit
any AOI (HAAR). Both a high FCR and a low HAAR suggest a
high level of gaze uncertainty. We conducted our assessment on
VisRecall [Wang et al. 2021], a dataset consisting of hundreds of real-
world visualisations fromMASSVIS [Borkin et al. 2015, 2013], along
with human gaze and AOI annotations. The AOIs are annotated
following the taxonomy by Borkin et al. [2015]. Gaze data from
VisRecall were collected under a recallability task, which includes
an encoding and a recalling phase. An EyeLink 1000 Plus eye tracker
at 2 kHz was mounted on a 24.5" monitor with a resolution of
1920 × 1080 px. Visualisations were scaled to fit around 21.1 × 14.8°
of visual angle in the centre. For our assessment, only the gaze
data from the encoding phase are used. We randomly selected 10
visualisations from each visualisation type: bar, pie, line, and scatter
plots.

3.1 AOI Flipping Candidates
As the first step, we determine the spatial uncertainty associated
with fixations. To this end, we take the raw gaze samples within
each fixation segment (i.e., the time span associated with a fixation),
and apply kernel density estimation (KDE) to arrive at the gaze
density distribution [Rayner 1998]. The extent of the estimation
error for the input gaze points is controlled by the bandwidth ℎ
of a Gaussian kernel 𝐾ℎ . We compute the overlaid gaze density by
summing up the contributions from the gaze samples, resulting in
the probability density for this fixation.

Our goal is the probability 𝑝𝑖 that describes the probability of
assigning a fixation to the 𝑖th AOI. Therefore, in the second step,
𝑝𝑖 is obtained by integrating (i.e., summing over an area) densities
over all points that are covered by the 𝑖𝑡ℎ AOI, that is,

𝑝𝑖 =

∫
𝑥 ∈Ω

1𝐴𝑖
(𝑥) ©« 1𝑛

𝑛∑︁
𝑗=1

𝐾ℎ (𝑥 − 𝑥 𝑗 )ª®¬ 𝑑2𝑥
Here 𝑥1, . . . , 𝑥𝑛 are the gaze samples associated with the fixation,
and 1𝐴𝑖

(𝑥) indicates if the point 𝑥 in image space Ω is covered by
the 𝑖𝑡ℎ AOI (i.e., 1𝐴𝑖

(𝑥) is the characteristic function for AOI 𝑖).
Figure 2 illustrates the computation of AOI probabilities.

Figure 2: Overview of the basic steps to decide whether a
fixation is considered a flipping candidate.

Fixations whose densities only overlay one AOIwill have a proba-
bility distribution peaked at this AOI, whereas fixations that overlay
two or more AOIs to a similar extent will result in distributions that
are closer to being uniform over the respective AOIs. We consider
the latter type of fixations as flipping candidates. Depending on
the number of AOIs that are overlaid by the fixation, we differen-
tiate between different ranks of flipping candidates. For example,

Figure 3 illustrates fixations of rank 2 and 3. Given a number of 𝑁
AOIs, the flipping candidate score 𝑠𝑘 of rank 𝑘 is defined as follows:

𝑠𝑘 =

𝑁∑︁
𝑖=1

𝑝𝑖 −
(
𝑘∑︁
𝑖=1

����𝑝𝑖 − 1
𝑘

����)
Note that we assume the probabilities 𝑝𝑖 to be sorted in descend-
ing order, that is, 𝑝𝑖 ≥ 𝑝𝑖+1. The first term of the score equation
penalises fixations whose spread covers mostly white space and
only few AOIs. The second term captures the degree of uncertainty
and is defined as the statistical distance between the probabilities
𝑝𝑖 and the discrete uniform distribution of length 𝑘 .

We define a flipping candidate of rank 𝑘 if its score 𝑠𝑘 exceeds
a predefined threshold 𝑡 , and it does not receive higher scores
on different ranks, that is, 𝑘 = argmax𝑗 (𝑠 𝑗 ). In this work, we only
consider rank 𝑘 ∈ {2, 3, 4} since it is unlikely that a fixation overlays
more than four AOIs. Examples of flipping candidates of rank 2
for scatter, bar, line, and pie plots can be found in Figure 4. Here,
fixations that receive scores 𝑠2 > 0.5 are marked in blue, whereas
fixations that receive scores 0 ≤ 𝑠2 ≤ 0.5 are marked in orange. As
an example, in the pie chart, the fixation located on the pie is marked
in blue since its density overlaps with two adjacent data segments
to a similar extent. In contrast, the fixation located between the
legend and source text is marked in orange since its density mostly
covers white space.

Figure 3: Examples of flipping candidates of rank 2 (left) and
rank 3 (right).

3.1.1 Metrics. We propose the Flipping Candidate Rate (FCR) to
quantify the probability that fixations might flip between two or
more AOIs. Given the above definition of a flipping candidate, we
can count the number of flipping candidates occurring in a scan-
path and use it as a measure of its uncertainty. Since we intend to
compare scanpaths of different lengths, we normalize the number
of flipping candidates 𝐶 by length 𝑁 to get the FCR = 𝐶

𝑁
of a scan-

path. Therefore, the FCR is a metric that describes how much the
gaze estimation error affects the mapping to AOIs.

We then go one step further and measure how much the uncer-
tainty in the AOI mapping impacts later analysis, here for the exam-
ple of scanpath analysis. To this end, we apply Sequence Score [Yang
et al. 2020], a pairwise string similarity metric that is normalized
between 0 and 1, where 1 suggests a perfect match. Each fixation
in a scanpath is mapped to a character in a string based on its AOI
label. We alter all flipping candidates in a scanpath to the second
most probable AOI according to the FCR, and compute the Sequence
Score between the original and flipped scanpaths.
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Figure 4: Examples of flipping candidates of rank 2 in pie,
line, bar, and scatter plots. Fixations whose flipping candi-
date score satisfies 0 ≤ s2 ≤ 0.5 are marked in orange, while
fixations with s2 > 0.5 are marked in blue.

Figure 5: Left: flipping candidate rates for varying flipping
candidate threshold and KDE Gaussian bandwidths. Larger
thresholds lead to fewer fixations being classified as flipping
candidates. Right: Descriptive statistics (boxplots and data
items) of flipping candidate rates across different types of
visualizations. A flipping candidate threshold of 0.5 was used.

3.1.2 Result. We use a 0.5 ° calibration error as the criterion to
separate gaze data into two groups: low calibration error and high
calibration error groups. We apply 0.05 ° KDE Gaussian bandwidth
to the low calibration error group, and 0.25 ° to the high calibration
error group. Figure 5 (left) illustrates how the FCR behaves under dif-
ferent flipping candidate thresholds. Larger thresholds lead to fewer
fixations being classified as flipping candidates. Figure 5 (right) il-
lustrates descriptive statistics of flipping candidate rates across
different types of visualisations under a flipping candidate thresh-
old of 0.5. The FCR of scatter plots are the highest, and line plots
are the smallest among visualisation types. Figure 6 illustrates the
occurrences of different AOIs involved in rank 2 flipping candidates
in each visualisation type. In line, bar, and scatter plots, TS (Title,
Source etc.) takes a majority of flipping candidates, ranking first
place in line and bar, and second place in scatter plots. Figure 7
shows the Sequence Score between the original and flipped scan-
paths across visualisation types under flipping candidate threshold
0.2. Participants are separated into two groups based on calibration
error. We use a 0.5 ° calibration error as the criterion to separate

gaze data into two groups: low calibration error and high calibra-
tion error groups. We apply 0.05 ° KDE Gaussian bandwidth to the
low calibration error group, and 0.25 ° to the high calibration error
group. We observed a significant difference in line plots and pie
plots across low and high calibration error groups (post hoc t-test:
line: t (165) = 2.43, p = 0.016, pie: t (161) = 2.51, p = 0.013), but the
difference cannot be confirmed for bar plots (t (159) = 0.54, p = 0.588)
or scatter plots (t (156) = 1.38, p = 0.172).

Figure 6: Analysis of the AOIs involved in flipping candidates
of rank 2. Each AOI pair corresponds to a fixation covering
those two individual AOIs. A flipping candidate threshold
of 0.5 is used. AOI label taxonomy is adopted from [Borkin
et al. 2015]. A: Annotation, D: Data, G: Graphics, L: Legend,
O: Object, S: Source, paragraph, label, and header row text,
denoted as Source etc., T: Title, X: Axis.

line scatter bar pie
Low calibration error

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Se
qu

en
ce

 S
co

re

line scatter bar pie
High calibration error

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7: Sequence Score between the original and flipped
scanpaths across visualisation typeswith a flipping candidate
threshold of 0.2. All flipping candidates are flipped to the
second probable AOI label.

3.2 Fixations Hit Any AOI
In most public gaze datasets of information visualisations, the raw
gaze data are not accessible [Borkin et al. 2015; Polatsek et al. 2018].
It means that the calibration error is unknown, and the analysis
in Section 3.1 is not applicable. However, we still can assess the
impact of gaze uncertainty, that is, by enlarging the size of all
AOIs uniformly. Given that the AOIs in visualisations can be close
to one another, a drift and error in the gaze data make fixations
land outside AOIs, or even hit different AOIs. In this analysis, we
gradually enlarge the size of the AOI annotation to account for
slight drifts in the gaze estimates.

3.2.1 Metrics. Since human attention is not naturally drawn by
low saliency regions such as white spaces [Matzen et al. 2017], if
there are too many fixations that land on empty or white spaces (in
our case parts of a visualisation without any annotation), it is likely
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indicative of large gaze estimation error. Hence, we propose Hit
Any AOI Rate (HAAR), which is defined as the HAAR = 𝐻𝐼𝑇

𝐻𝐼𝑇+𝑂𝐹𝐹
,

where 𝐻𝐼𝑇 represents the number of fixations that hit at least one
AOI, and𝑂𝐹𝐹 represents the number of fixations that are not within
any AOI.

3.2.2 Result. Fixations in this section are all adapted from the
default fixation detection algorithm integrated in the EyeLink 1000
Plus eye tracker. Figure 8 demonstrates that pie plots have the
highest HAAR among visualisation types without any enlargement.
When the enlargement factor is larger than 0.2 °, bar plots have the
highest HAAR among visualisation types.
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Figure 8: AOI enlargement factor by visual angle and the Hit
Any AOI Rate (HAAR). When the AOI enlargement factor
is larger than 0.2 °, HAAR of bar plots exceeds pie plots to
become the highest.

4 DISCUSSION
In this work, we demonstrated that gaze uncertainty can signifi-
cantly impact subsequent AOI-based analysis such as scanpaths,
including comparisons of scanpaths using similarity metrics. Us-
ing the two proposed metrics, the Flipping Candidate Rate (FCR)
and Hit Any AOI Rate (HAAR), we identified several interesting
findings that we discuss below.

Flipping candidate threshold and AOI enlargement factor. Since
there is no AOI ground truth for gaze data, i.e., which AOI the par-
ticipants really look at, it is difficult to identify whether fixations are
assigned to the correct AOI. Hence, there is no deterministic rule
to set the flipping candidate threshold and AOI enlargement factor.
Figure 5 shows that the flipping candidate rate varies between 0.01
to 0.40 as the threshold changes, so a proper threshold becomes
crucial for later analysis. Figure 8 illustrates the HAAR under differ-
ent values of the AOI enlargement factor. A 1.0 ° AOI enlargement
makes the HAAR increase from below 70% to above 80% for all
kinds of visualisation types. This shows that AOI enlargement is
an effective strategy to compensate for the influence of gaze esti-
mation error, especially when only fixations are available [Borkin
et al. 2015]. This is also a bio-plausible strategy since humans can
perceive visual information in the foveal region [Jonas et al. 2015].

Guidelines on parameter selection. Here, we give a general guide-
line about how to choose a proper flipping candidate threshold and

an AOI enlargement factor. When AOIs are so close to one another
that the gaze estimation error cannot be ignored, a smaller flipping
candidate threshold (e.g. 0.2) and a larger enlargement factor (e.g.
0.8 °) are desired. A smaller flipping candidate threshold ensures
that more ambiguous fixations can be detected, and a larger en-
largement factor compensates more for the gaze estimation error
to correct slight shifts or drifts of the gaze data. However, enlarging
the size of an AOI too much will lead to overlapping AOIs, which
then points to an increase in the flipping candidate rate.

Gaze uncertainty across visualisation types. Figure 5 shows that
line and pie plots have fewer flipping candidates than bar and scatter
plots. Moreover, in Figure 7, the sequence scores of line and pie plots
between low and high calibration error groups is significant. This
indicates that the impact of gaze uncertainty on bar and scatter plots
was more severe than line and pie plots onMASSVIS dataset [Borkin
et al. 2013]. While it is unclear whether such differences between
visualisation types also hold on different datasets or visualistion
designs, it opens up an opportunity for future research. Future work
should investigate methods to design and optimise, e.g. different
parameters for bar and scatter plots, to make them more robust
against gaze uncertainity and limit such effects on any subsequent
analysis. Figure 4 gives an impression of how different thresholds
influence the flipping candidates in each visualisation type. The
extent towhich flipping candidatesmay threaten the validity of later
analysis stages depends on the actual AOIs it overlays. A flipping
candidate that overlays AOIs that share the same labels will not
cause a difference in later analysis stages. As shown in Figure 6,
the majority of flipping candidates occurring in scatter and pie
plots can be considered insignificant, such as XX (Axis), SS (Source
etc.), and DD (Data). Moreover, there are flipping candidates that
overlay semantically different AOIs, such as TS (Title, Source etc.),
SL (Source etc., Legend), and XD (Axis, Data). For example, in
Figure 4, the bar plots shows two fixations that overlay an axis and
a data item, while the red fixation in the pie plots is an example of
SL.

5 CONCLUSION
This paper demonstrated and assessed the impact of gaze uncer-
tainty on AOIs in information visualisations by introducing two
effective metrics: Flipping Candidate Rate (FCR) and Hit Any AOI
Rate (HAAR). Results showed that gaze uncertainty is a key factor
that may impact the credibility of eye tracking studies and any
resulting findings. While this paper addresses information visu-
alisations, it also has a strong potential as an extension to other
visualisation fields, such as volume visualisation or scientific visu-
alisation in general.
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