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Abstract

Smooth pursuit eye movements hold information about the health,
activity and situation of people, but to date there has been no effi-
cient method for their automated detection. In this work we present
a method to tackle the problem, based on machine learning. At
the core of our method is a novel set of shape features that cap-
ture the characteristic shape of smooth pursuit movements over
time. The features individually represent incomplete information
about smooth pursuits but are combined in a machine learning ap-
proach. In an evaluation with eye movements collected from 18
participants, we show that our method can detect smooth pursuit
movements with an accuracy of up to 92%, depending on the size
of the feature set used for their prediction. Our results have twofold
significance. First, they demonstrate a method for smooth pursuit
detection in mainstream eye tracking, and secondly they highlight
the utility of machine learning for eye movement analysis.

CR Categories: I.5.2 [Pattern Recognition]: Design
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1 Introduction

Smooth pursuit movements constitute a significant proportion of
eye activity but have not been embraced in mainstream eye track-
ing. Smooth pursuits occur when the eyes “latch onto” a smoothly
moving object and follow it at a linearly related velocity. They con-
trast saccadic movements that occur when the eyes move rapidly
from one visual target to another, or follow an object that is sud-
denly displaced. On visual inspection smooth pursuit movements
can often be easily made out, in particular if their occurrence is
expected as for example in a controlled test.

The nature and mechanics of smooth pursuits are well understood
[Robinson 1965] but in contrast to other eye movements - specif-
ically saccades, fixations and blinks - there has been virtually no
work on their automated detection [Koh et al. 2010]. Others before
us have argued that detection of smooth pursuits would have use-
ful applications in human-computer interaction, and noted that the
lack of a generic method represents a significant gap in eye move-
ment research [Grindinger 2006; Koh et al. 2010]. Some work how-
ever has been reported on the use of Kalman filters for processing
smooth pursuits [Cecchin et al. 1990; Abd-almageed et al. 2002].
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More recently, a common approach is to classify pursuits based on
both dispersion and velocity of the signal, but the thresholds vary
greatly depending on the data [San Agustin Lopez 2009; Larsson
2010; Liang and Lee 2008; Koh et al. 2010]. Another approach is
to label smooth pursuits as what falls in between velocity thresh-
olds set for fixations and saccades [Grindinger 2006; Komogortsev
and Khan 2007]. Further insight into the classification problem was
provided by work that analysed a larger variety of features for dis-
crimination of different types of eye movement [Vidal et al. 2011].

In this work we propose a novel approach that is based on capturing
a multitude of features and to use machine learning techniques for
smooth pursuit detection. Machine learning is well established for
pattern recognition but is novel in the context of eye movement
analysis. The principle is to consider a set of features that represent
incomplete information about a statistical phenomenon, in our case
smooth pursuit movements, and to use a learning algorithm to select
features that in combination predict the phenomenon.

The challenge and novelty in the approach lie in the development of
features that capture the dynamics of smooth pursuits, while stan-
dard algorithms are used for feature selection and pattern classifi-
cation. The features we introduce are based on the observation that
smooth pursuits exhibit less variance in basic signal characteristics
than other eye movements when analysed over several consecutive
time windows. In order to capture these characteristics, we define
shape features that represent signal shapes of characteristically low
variance. For evaluation, we collect a large dataset of eye move-
ments from 18 participants containing sequences of smooth pursuits
amongst other movements and show the feasibility of detecting pur-
suit movements with a machine learning approach.

2 Pursuit Detection Using Shape Features

Our method for detection of smooth pursuits is based on the follow-
ing concepts, which we will elaborate subsequently:

1. We use a set of features that capture different aspects of eye
movement, and use machine learning to combine features for
detection of smooth pursuits.

2. We use a sliding window approach for feature extraction,
as this permits the translation of our results into a detection
method that can be implemented in real-time.

3. In each time step, we extract seven signal measures, such as
slope and range, to capture different aspects of the eye move-
ment signal under the window. In an initial training phase, a
representative sample of smooth pursuit movements is used to
compute mean and standard deviation for each of these mea-
sures.

4. We compute shape features over a succession of windows, to
capture whether measures’ values conform with the trained
model (in terms of a certain maximum variance from the
mean) not only in a single window but sustained over sev-
eral windows. The classification algorithm for detection of
smooth pursuits is entirely based on the shape features.
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Figure 1: Example binary shape feature calculated from the integral measure for a smooth pursuit (a) and a saccade (b) using the same
window size wsl. The integrals In stay within the given lower boundary bl and upper boundary bu over several consecutive windows for the
smooth pursuit (feature value 1) while I2 changes considerably in the case of the saccade (feature value 0).

2.1 Extraction of Signal Measures

We use a sliding window approach for feature extraction. In this
approach a window of size wsl is moved over the data with a step
size ssl, and measures are computed to represent the signal under
the window. This contrasts analysis of the whole data set after it has
been captured in its entirety, and has the advantage that it can not
only be used for offline analysis (as shown here) but also for online
detection with a real-time algorithm.

In each step of the sliding window, we extract seven signal measures
from the data in the current window, as described in Table 1). The
measures are extracted separately from the vertical and horizontal
movement components, as well as from a combination of both com-
ponents. Some of these measures were inspired by previous work
on eye movement analysis and other physiological signals [Miller
2008; Vidal et al. 2011]. Others were motivated by the specific
characteristics of smooth pursuit movements.

By analysing the shape of different eye movements, we found that
the slope of the signal is quite stable for fixations and typically in-
creases sharply for saccades and blinks. It also increases for smooth
pursuit movements but more slowly. The same applies to the mean
velocity, range, variance, integral and energy of the signal. For the
latter, smooth pursuit movements evolve more slowly than saccades
but faster than fixations. Finally, the waveform length is the length
a string would have if we would fit it to follow the shape of the
signal. The waveform length measure should be very low for fixa-
tions, very high for blinks and in-between for saccades and smooth
pursuits.

2.2 Shape Features

Shape features are complex features we developed on top of the
signal measures. We refer to them as shape features, as they in-
tegrate information on the shape of smooth pursuits. The ratio-
nale for these features is that smooth pursuits tend to evolve more
slowly than other movements, and in a relatively regular way. We
capture this by analysing over consecutive windows whether sig-
nal measures conform with values expected for smooth pursuits.
The range of expected values is derived from training data, and ex-
pressed in terms of lower and upper boundaries for each measure:
boundariesmes = meanmes ± αstdmes. The coefficient α is a
parameter for scaling variance.

Figure 1 illustrates how shape features are computed from signal

measures, in this case the integral of the signal. Shape features
evaluate to 1 when the measure remains within the boundaries as-
sociated with smooth pursuit over a succession of windows, and are
otherwise set to 0.

Machine learning and classification of smooth pursuits versus other
movements operate entirely on the level of shape features. Mea-
sures are not taken into account directly in the learning and classi-
fication process, but used solely to derive shape features.

3 Evaluation

3.1 Experiment

We evaluated the performance of the smooth pursuit detection algo-
rithm on data collected from a previous experiment. While the goal
of the user study was to collect ground truth annotated eye move-
ment data containing smooth pursuit movements, saccades, fixa-
tions, vestibulo-ocular reflex movements and blinks, we only used
the smooth pursuit movements, regarding the rest of the data as a
“null” class for the classification, that is to say the data the smooth
pursuits are classified against. The classification problem was thus
a two-class problem. The study, which was approximately 20 min-
utes long, involved 18 participants to perform a sequence of these
eye movements by looking at a visual stimulus shown on a com-
puter screen. The smooth pursuits were both horizontal and verti-
cal, with amplitudes of 2, 6, 12, 22 and 28◦ of visual angle, shown at
speeds of 15 and 30◦/s. The eye data we analyse here was recorded
using a Dikablis mobile infrared eye tracker from Ergoneers GmbH
running at 25Hz. Afterwards, the data was segmented into different
eye movement instances, on which we evaluate the shape features
method through classification. Our method is based on the assump-
tion that nothing else than the eye data is available, which is why
we do not use any information from the scene camera. This method
can thus be exported to other eye movement acquisition techniques
such as electro-oculography (EOG).

3.2 Data Processing and Classification

We started the evaluation by extracting the seven signal mea-
sures for five different window sizes from the horizontal com-
ponent x, the vertical component y and for x and y combined
(wsl ∈ {80, 100, 120, 140, 160}ms). The minimum window size,
wsl = 80ms, was set by the limitations from the sampling fre-
quency. The step sizes (respectively ssl ∈ {50, 60, 70, 80, 90}ms)



Measure Formula Description Combined Method

Slope S = ampl(t)−b
t

Slope of a first-order polynomial
fitted to the signal

S(amplx) + S(amply)

Range R = max(ampl)−min(ampl) Range of the signal R(
√
ampl2x + ampl2y)

Mean Velocity MV = mean(| dampl(t)
dt

|) Mean of the point-to-point signal
velocity

MV (
√
ampl2x + ampl2y)

Variance V = 1
N−1

∑N

k=1
(ampl(k)−mean(ampl))2 Mean of the squared deviation of

the signal from its mean
V (

√
ampl2x + ampl2y)

Integral I = (tN − t1)ampl(1)+ampl(N)
2

Area under the signal using trape-
zoidal approximation

I(amplx) + I(amply)

Energy E =
∑N

k=1
|ampl(k)|2 Integral of the squared signal E(amplx) + E(amply)

Waveform Length WL =
∑N

k=2
|ampl(k)− ampl(k − 1)| Straight length of the signal WL(

√
ampl2x + ampl2y)

Table 1: Measures extracted from the signal in each step of the sliding window. ampl is the amplitude of the eye position, N is the number
of time samples in the window, b is the y-intercept of the polynomial. For the measures of integral and energy, the window is first normalised
so that the initial position of the eye does not influence the measure’s value.

were designed to cover partially the previous window without cov-
ering more than half of it to avoid data redundancy.

For the evaluation, instead of using a detection algorithm we clas-
sify smooth pursuit against all other movements recorded during
the experiment. This is thus a two-class classification problem.
We used a k-nearest neighbours classifier (k = 3) and calculated
its performance for each five window sizes and for different val-
ues of α. We used a 10-fold cross-validation: for each repetition,
we selected 10% of all smooth pursuit instances for testing and the
remaining 90% for training. All other movement instances were
in the “null” class against which the pursuits were classified. The
boundaries for the shape features were only calculated on the train-
ing set with α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, using only
one value of α per trial. We generated the shape features for 3,
4 and 5 consecutive windows. As we used the seven measures,
calculated for horizontal channel, vertical channel and their combi-
nation, using three different numbers of consecutive windows, this
resulted in a total number of 63 shape features. Finally, prior to the
classification we ran a minimum redundancy maximum relevance
(mRMR) feature selection algorithm and classified the testing in-
stances for each possible feature set size. The classifier’s output
for each movement was then compared to the actual labels of the
movement, generating the measure of accuracy we use in Figure 2.

3.3 Overall Recognition Performance

Figure 2 gives us an understanding of the influence of the feature set
size on the performance. We plotted the feature set size against the
accuracy of the classification, and Figure 2 shows that larger win-
dow sizes give better results. However, these results are reached
with a larger number of features. Interestingly, we found a satu-
ration effect of the window size: the overall accuracy of the 80ms
window stays the same from a set of 25 features onwards even if
the feature set size increases. This saturation effect appears later
with larger window sizes: around 40 features for wsl = 120ms
and 50 features for wsl = 160ms. This means that it is possible
to get a better performance with a larger window size but it comes
with the trade-off of manipulating a set of features that grows with
the desired performance. Figure 2 also indicates the best and worst
accuracy for each window size depending on the α selected. The
coloured area is the span of the different results we obtained by
sweeping the α value for the boundaries calculation. We can see
that generally the best performances are reached for an α of 0.3
or 0.4. If α is too big or too small (not shown here as the worst
accuracy always came with the biggest α), the classifier is not as
accurate.
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Figure 2: The accuracy of the classification depending on the fea-
ture set size for window sizes wsl = 80ms, 120ms, 160ms. The
plot shows the best and worst accuracy for each of these three win-
dow sizes, depending on the coefficient α. A saturation effect ap-
pears on the feature set size: although it does not reach a maximum
accuracy as good as larger window sizes, a smaller window size
will reach its top accuracy with a smaller number of features.

4 Discussion

4.1 Shape-Based Detection of Smooth Pursuit

The shape-based approach proved to be well suited for smooth pur-
suit detection. The proposed shape features efficiently encode the
temporal characteristics of smooth pursuit movements. While the
approach was developed for detecting smooth pursuits, it is generic
and thus not limited to only such movements. In order to use it for
other movements, the only modification would be to code the shape
features differently by adapting the pattern they seek to recognise
in the data. For smooth pursuits the pattern was stability of val-
ues over several windows, while for saccades it could be a drastic
change between two windows. In future work we plan to apply it
on the problem of detecting other types of eye movements, such as
certain instances of the vestibulo-ocular reflex.



One drawback of the proposed machine learning based approach is
that it requires a certain amount of training data. This is in contrast
to established methods that rely on single features calculated using
signal processing techniques, such as the velocity profile or the dis-
persion of gaze points. For a real-world implementation, however,
such data would only need to be recorded once and used to iden-
tify the initial parameters and train the classifier. During operation,
the trained parameters, such as the window size or the boundaries,
can then be adapted online to the specific user or task at hand. In
combination with unsupervised machine learning techniques, such
as clustering [Jain et al. 1999] or self organising maps [Kohonen
and Somervuo 1998], this may allow us to develop a robust, fully
automatic smooth pursuit recognition system.

Finally, the shape features provide an interesting opportunity for a
future extension of the algorithm. At the moment, the features are
binary and do not provide any information on how close the shape
of the signal is to that of a typical smooth pursuit movement. The
difference between the boundary and the features values could be
used as a measure of the quality of the classifier’s prediction out-
put. This so-called confidence value would then allow the system
to take more fine-grained decisions or to rank or compare different
instances of smooth pursuit movements. This would potentially im-
prove the recognition rate on a more diverse set of pursuits than the
subset investigated in this work.

4.2 Features

From the analysis of the different feature set sizes we can derive
some interesting findings. The number of features considerably in-
fluences the overall recognition performance. Generally speaking,
the more features are used during classification the better the recog-
nition performance. This validates our approach for not using a
single feature to discriminate smooth pursuits against other move-
ments but rather use a combination of features. However, as can
be seen from Figure 2, recognition performance does not improve
significantly beyond a saturation point that varies together with the
window size. The detection of this saturation point is important as it
means manipulating less features for the same performance, which
accelerates the data analysis.

We observed that during feature extraction, the larger the window
size the better the performance (see Figure 2). This makes sense
given that using a larger window size more information is available
for calculating the different shape features. Using such a large win-
dow size may cause problems for real-world applications as a large
window size prevents the algorithms from detecting smooth pur-
suit movements shorter than this window size. Thus, for detecting
smooth pursuits of arbitrary length, a small window size is gener-
ally desirable. In addition, the sliding window approach can be an
obstacle to detecting the precise onset and offset of the movement.

5 Conclusion

In this work we have focused on the problem of detecting smooth
pursuit movements and introduced a novel approach to tackle it,
based on machine learning. We have described a concrete method
that is centred around shape features, a new type of feature we de-
signed to capture signal shape characteristics that are stable over
consecutive windows. The method was evaluated based on a multi-
user dataset of different types of eye movement, achieving a detec-
tion performance of up to 92%. More importantly, the evaluation
has also provided insight into the influence of factors such as win-
dow size and feature set size on overall performance.

We draw a number of key conclusions from this work. First, it
demonstrates the feasibility of smooth pursuit detection with a ro-

bust approach that, importantly, lends itself to implementation in
a real-time system. This is significant in view of enabling appli-
cations in everyday settings, for instance context-aware support of
everyday situations. Secondly, the work highlights the utility of
machine learning for eye movement analysis. Eye movement and
visual behaviour are complex and as a result hard to describe with
one-fits-all features. As we have shown, machine learning has the
potential to capture complex patterns on the basis of larger feature
sets. Thirdly, we have shown that shape features are effective for
capturing temporal behaviour of signals. We have introduced the
shape features specifically for smooth pursuit detection but the con-
cept is generic and can be applied to learning and detection of other
types of eye activities.
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