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ABSTRACT

Today touchscreens are one of the most common input devices for
everyday ubiquitous interaction. Yet, capacitive touchscreens are
limited in expressiveness; thus, a large body of work has focused
on extending the input capabilities of touchscreens. One promising
approach is to use index finger orientation; however, this requires
a two-handed interaction and poses ergonomic constraints. We
propose using the thumb’s pitch as an additional input dimension
to counteract these limitations, enabling one-handed interaction
scenarios. Our deep convolutional neural network detecting the
thumb’s pitch is trained on more than 230,000 ground truth images
recorded using a motion tracking system. We highlight the potential
of ThumbPitch by proposing several use cases that exploit the
higher expressiveness, especially for one-handed scenarios. We
tested three use cases in a validation study and validated our model.
Our model achieved a mean error of only 11.9°.
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1 INTRODUCTION

Touch-based devices dominate the interaction landscape and can
be found not only in mobile devices, such as smartwatches, smart-
phones, and laptops, but also in devices that traditionally had haptic
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Figure 1: A developer mode of ThumbPitch input, with the
capacitive image on the screen and the correlated pitch
value of the thumb.

buttons, such as door-lock pads or household appliances. Touch-
screens are attractive because they combine input and output in a
single interface. Thus, they are easy to learn and use. However, the
simplicity of touch interaction comes with several limitations, the
most prominent being limited expressiveness; that is, today’s touch
controllers only extract a 2D point from the finger touching the
surface. Yet, finger input contains much more information, such as
finger type, pressure, and orientation.

Consequently, an increasing number of researchers and manu-
facturers have investigated ways to extend the capabilities of touch-
screens with additional input dimensions. For instance, Knuckle-
Touch [13, 34], an enriching interaction that nowadays can be found
in a wide variety of Huawei phones. However, this approach or
others like Apple’s ForceTouch are still limited in expressiveness
as they can only input two or three levels (finger vs. knuckle). Be-
yond enriching interactions that made it into consumer products, a
wide variety of interactions for touch-based devices has been pro-
posed over the last decades, such as finger-identification [10, 19, 24],
finger-authentication [11, 17], the finger roll [32], and most promi-
nently, finger orientation [27, 31, 36, 39]. Finger orientation offers
the largest input space with two dimensions; however, the enlarged
input comes at an ergonomic cost [26, 28]. Boring et al. [3] present
a promising approach by approximating the thumb contact area
as additional input. However, they only rely on a single value to
estimate the input: the ellipse major. Due to the lack of fine-grained
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touch information, this implementation requires a one-time setup
process. Moreover, the user has to specify their input hand for ev-
ery interaction. Finally, their approach assumes that the change in
ellipse major is linearly correlated with the pitch. In their work,
they hinted that the contact area or the shape could improve their
accuracy. We follow up on the hints by Boring et 8] and improve
their estimation approach using deep learning.

We presenfThumbPitcha deep learning approach to estimate the
thumbs' pitch angle to allow for a richer interaction, see Figure 1.
At its core, ThumbPitchuses a convolutional neural network (CNN)
regression model to estimate the pitch of the thumb based on the
raw capacitive image recorded by the touch controller. In detail,
we trained our model on data collected in a ground truth data
collection study. Finally, we present several use cases that enrich
touch interactions usingrhumbPitchof which we evaluate three
in a separate study. We demonstrate that the method is accurate
and robust across users when trained on a suitable amount of data

ThumbPitcthas two key advantages over existing touch input
techniques. First, the nature @humbPitctallows for a one-handed
interaction, which makes it the only technique that enables one-
handed scenarios to support more than three input levels allowing
for richer interaction. Second;humbPitchs highly practical, given
that our deep learning estimation model can be deployed with a sim-
ple software update. This makes our technique directly applicable
to the billions of touch screens already deployed worldwide. In sum-
mary, we contribute the design, implementation, and evaluation of
our ThumbPitchdeep learning approach. A one-handed interaction
that enables continuous value input. Moreover, we open-source
our datasets and our model, allowing others to improve and deploy
ThumbPitch

2 RELATED WORK
While the literature on extending the interaction space for mobile

devices and touch-based devices covers a wide range of possibili-

ties, from Back-of-Device to cross-device input, we will focus on
techniques that directly impact or inspir€humbPitchBoring et al

[3] rst proposed the idea of using the thumb as an additional in-
put dimension. However, in their early implementation, they only
allowed for a set of levels as input. Thus, continuous input was not
possible. We will focus on ergonomic constraints during input and
then on interaction techniques that only use the front screen to
understand this limitation.

2.1 Reachability and Ergonomic Constraints

Mobile devices are distinctly di erent from stationary systems,
such as PCs, in terms of a ordances and ergonomic constraints,
as the dominant input is touch. While today's touch controllers
only extract a 2D point, Holz and Baudischf 16 showed that
touch input is multi-dimensional. Nevertheless, grip and reachabil-
ity impact the usability of touchscreens. Bergstrom-Lehtovirta and
Oulasvirta [1] studied the thumb's reachability for smartphones.
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with tablets. Further, Trudeau et al. [35] argued that buttons close
to the resting position of the thumb are optimal for frequently used

actions while all other positions need more e ort to be reached.
Yet, Le et al[25] showed that the thumb can reach large portions

of the front screen without changing the grip. Thus, we argue that

ThumbPitcthas great potential to overcome the issues of previously
proposed interaction techniques.

2.2 Extended Interaction for Mobile Devices

As the contact area is often provided already up to the application
layer in today's operating systems, one of the simplest enrichments
for touchscreens is using the ngers' contact are3, B]. Similarly,
Roudaut et al[32] proposed rotating the nger around the roll
. vector by classifying left and right rolls based on the touchpoints.
Other enrichments use separate sensors or data that are not pro-
vided to the application layer. One prominent example is detecting
di erent parts of the nger touching the screen, which was initially
envisioned by Harrison et a[13]. They used the sound emitted
by ngers when touching the surface to recognize the nger part.
Later, Schweigert et a[34] presented a deep neural network ap-
proach to use the capacitive image to distinguish between nger and
knuckle touches. Initial work by Colley and Hakkil&] proposed
nger-aware interaction. However, they used the Leap Motion to
prototype the interaction, which made the device bulky. Therefore,
Zhang et al [40] used the built-in capacitive image coupled with
electric eld sensors to enable enhanced pen and touch interactions
using only small external sensors. Finally, Le et[@4] presented
a deep CNN recognizer to enable nger identi cation on a com-
modity smartphone without any external hardware. As a result of
this development, we argue that using the capacitive image from
the touchscreen has a high potential to enrich mobile interactions.
Moreover, as today's mobile devices all use capacitive sensors, de-
ploying new interaction techniques, such @humbPitchis possible
with only a simple software update.

Capacitive images have already been proposed for a wide variety
of new interactions on smartphones and smartwatches, such as
authentication using ngers and other body part®9[11, 17, 30.
Especially, capacitive images coupled with machine learning (ML)
show great potential and continuously outperform the baseline.
For simple touch prediction, Kumar et.gP1] improved the touch
accuracy by23%over the baseline using capacitive images and
CNN. Others enabled force touch input without additional sensors
using neural networks 2]. In a similar fashion, Le et a[22] used
the capacitive image to enable palm touch input. Another approach
presented by Cami et gJ5] used the capacitive image and s on touch
tables to enhance stylus input. They used di erent hand poses to
activate a range of input modi ers, such as handwritten input and
marking text. Finally, a large number of researchers investigated the
recognition of nger orientation [20, 27, 31, 36 38 39. Remarkably,

They showed a correlation between surface size, hand size, and the most accurate implementation by Xiao et B8] improved

position of the index nger. Also, the nger orientation input has
been shown to have heavy ergonomic constraints when using the
index nger in a two-handed scenarioZg. At the same time, Wolf
et al [37] showed a high delity of the thumb during interaction

the recognition by using only the built-in sensor of current mobile
devices. Lastly, Mayer et .aJ27] further improved these initial
results using a deep CNN to estimate the ngers' pitch and yaw
angles.
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3 GROUND TRUTH DATA COLLECTION

We conducted a data collection study to train our deep CNN model
to estimate the thumb's pitch angle. In line with previous work
that also used raw capacitive image 1], we aimed to collect
a wide range of samples. Therefore, we collected samples with
sub-millimeter accuracy at a high frame rate from 16 participants.
For a maximum variety ofhumbPitchinputs, we asked partici-
pants totap with di erent angles on the screen andontinuously
change the angle without releasing the thumb. We asked partici-
pants to perform input at two di erent locations; in theenterand
at anintersectiomf the very center capacitive pixel of the capacitive
image, following instructions by27, 29. Thus, we recorded four
input modalities (tap vs. continuous center vs. intersection). The
order was randomized; however, we did not further consider the
modalities in the evaluation as they only serve to capture a wide
input variety, allowing for better generalizability.

3.1 Apparatus

We used an LG Nexus 5 (screen size: 4.95 in) mobile phone to collect
the capacitive images as it provides us with the possibility to read
the capacitive image in real timeé2B 28. In line with prior work

[27, 33, we recorded the ground truth positions and angles of the
nger and phone with a high-resolution motion capture system by
OptiTrack.

We used Flex 3 cameras delivering high-precision marker posi-
tions at 100 FPS. To track the thumb angle and position, we attached
a 3D marker right on the thumbnail. In detail, we used a specially
designed 3D-printed marker attached to the participant's thumb
to track the pitch angle while interacting with the phone. The 3D
printed marker represents the negative of a ngernail and ts on
top of the participant's thumbnail without restricting reachability
(see Figure 2). We further added three cylinders attached to infrared
re ective markers for optical tracking.

We used a PC for data recording, live visualization, and syn-
chronization, see Figure 2. To retrieve the capacitive images from
the touchscreen, we modi ed the phone's kernel as described by
Le et al [23]. Therefore, we had access to tB& 15 8-bit raw
capacitive images of the Synaptics ClearPad 3350 touch sensor with
a frame rate of 20 FPS. Additionally, we implemented a custom app
that instructed participants to repeatedly touch a red crosshair (size:
2 2 cm) to indicate the two positions (center vs. intersection).

3.2 Procedure

We welcomed participants into our laboratory and explained the
data collection study to them in detail. After answering any ques-
tions they had, we asked them to sign an informed consent form.
After asking participants to take a seat in front of our motion cap-
ture system, they lled in a demographics questionnaire. Using body
tape, the experimenter then attached the marker to the participant's
thumb; see Figure 2.

We asked participants to perform various pitch angles for the rest
of the data collection study to record ground-truth pitch angles via
the motion capture system and the raw capacitive images. During
the recording, participants were asked to hold the phone with their
dominant hand. Whenever participants had di culties performing

Figure 2: The setup of the data collection study, including
the study phone, the optical re ection markers for tracking,
and the OptiTrack cameras used for position tracking. The
re ection markers are attached to the phone as well as the
thumbs nail for submillimeter-accurate tracking.

inputs, they were allowed to stabilize the phone with their non-
dominant hand.

During the experiment, the experimenter was able to monitor
the participants' input progress using the live motion capture data.
Thus, we could inform participants about the pitch angles they
have not performed yet. This further enabled us to record a diverse
dataset. We asked all participants to perform inputs in random
order (tap vs. continuous center vs. intersection).

3.3 Participants

We recruited 16 participants (6 females and 10 males) from an
internal university volunteer pool aged between 18 and 32 years
(M = 245, SD = 3:5). All participants' dominant hand was the
right hand. No participant had any movement impairments. We
paid 10 EUR per hour as compensation for the study, which latest
approximately 45 minutes.

4 THUMBPITCH ESTIMATION MODEL

In the following, we present the development of tAignumbPitch
estimation model. The resulting CNN regression model takes the
raw capacitive images as input and estimates the pitch angle in
angular degrees betwedh (at nger) and 90 (steep nger).

4.1 Dataset and Preprocessing

While we automatically synchronized the capacitive images and
ground truth pitch, the motion capture system has a latency of
around 100 ms. Thus, we manually adjusted the synchronization
using visual inspection of the marker movement and change in
the pixel sum of the capacitive image. Afterward, we performed
a blob detection similar to related work using capacitive images
(e.g., R4 27, 34). Next, we cropped the blobs by the center of mass
and pasted them in the upper left corner in an emptyt  14image

to counteract CNN translation e ects1g. We chosel4 14asiit

is symmetric and the maximum blob plus overhead ts into the
new size. While a larger image would be possible, no variation in

0OzCHI 22, Nov 29-Dec 2, 2022, Canberra, Australia
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We used the trial-and-error method/[ combined with a grid
search for hyper-parameters tuning usir®y: 5 : 3participants, a
common split of about 50%:30%:20%, for the training, testing, and
validation set, respectively. The validation set remains untouched
during the training phase. After testing a wide range of di erent
architectures, we determined that a CNN with three convolution
layers and two dense layers yields the best results. The nal model
structure and the network parameters are depicted in Figure 5.
The dropout layers are set to 0.5 and the CNN kernel siz8 to3.
For all layers, we used the ReLU activation function. Additionally,
we found that L2 regularizers after each layer with a value of 0.4
perform the best.
Figure 3: Ten example touches of one participant with the As the loss function, we decided to use a mean-square error
white dashed lines representing the ellipse t. (MSE) function to reduce potential over tting toward the outlier.
While testing di erent optimizers, we found that training with an
Adam optimizer yielded the best results. Additionally, we settled
data occurs in this area; thus, only making it bigger and slower. 0n the following parameters for the optimizer after testing their
Examples of the processed images are shown in Figure 3. impact on the training results: we settled on a learning rate start-
After preprocessing 233,072 capacitive images from 16 partic- iIng from :001with a reduction by5%after 10,000 epochs without
ipants were ready to train our model. For each capacitive image, improvement and a minimal learning rate of .00001. We used a
we have the Corresponding ground truth p|tch ang'e from the mo- batCh Size Of 2,000 and tl’ained the model fOI’ 300,000 epOChS, Wh|Ch
tion tracking system. Various impacting factors made the resulting 00k approximately nine days on an NVIDIA Tesla V100 to train.
dataset unbalanced, such as recording at 20 FPS, unfamiliarity to Afterward, we performed a warm-start to push our initial results,
perform the extreme pitch movement7, 38, and stability is- & common technique to optimize deep-learning ML models. For
sues B]. Therefore, we augmented the data by adding Gaussian the warm-start training phase, we used an early stopping approach.
distributed noise i1 = 4, SD= 8) to balance all samples withinthe ~ The training stopped after an additional 98,945 epochs. We expected
training dataset. We did not add noise to the test or validation set Such & long training time due to the low learning rate; however, we
to avoid over tting toward the noise but balanced the samples in ~ found this leads to more stable results.
the training dataset.

4.2 Boring et al's [3] Baseline Approach

Boring et al [3] proposed that the contact size of the thumb can
be used to identify the angle of the nger. In detail, they used the
major radius of an ellipse tting provided by the iPhone's API. Thus,
we tted an ellipse [17 to the capacitive images to estimate the
pitch angle using Boring et al's approacB][ The initial visual
inspections looked promising for an ellipse to determine the pitch
angle, see Figure 3.

Boring et al's approachd assumes alinear relationship between
the ellipse major and the pitch of the nger. Therefore, we tted a
line to the ellipse major to understand if this is a good approxima-
tion for the thumb. The linear t for the ellipse major has B of Figure 4: The correlation between the tted ellipses major
:86, see Figure 4. This suggests an overall low tting quality. Using and the thumbs' ground truth pitch. The grey area repre-
this linear t, we can furthermore determine the error on the test ~ sents the standard deviation.
set. The tresults in a RMSE df7.2 with a mean absolute error
of 138 (SD= 102 ), see Estimation Error in Figure 4. ) .

Table 1: The baseline and model tting results. All values are

4.3 Model Training in degrees.

The goal of our model is to predict the thumb's pitch based on the
capacitive image; hence, the input is the capacitive image. Dur- RMSE MAE SD
ing model training, we used the ground truth pitch angle that we Baseline by [3] 155 126 89
recorded using the motion tracking system in our data collection

study. As data representation approaches such as CNNs have been Our CNN Model - Train Set 8j2 6_4 Sfl
. - Our CNN Model Test Set 9.8 75 63

shown to be more e ective for capacitive data than feature extrac- . ) .

. . - Our CNN Model Valida- 117 a5 69

tion approaches, e.g.24, 27, 34, we opted to skip this step and tion Set

started exploring deep CNN models.
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Figure 5: An illustration of the architecture of our CNN re-
gression model to estimate the pitch value.

4.4 Model Results

Our regression model estimates the thumb's pitch angle between
0 (at)and 90 (steep) based on the raw capacitive image. Our
nal model estimates the thumb's pitch angle with RMSEf 8:2
(MAE= 6:4 ,SD= 5:1 ) on the training set, see Table 1. The model
is accounting for similar results for the test set when keeping in
mind that the test set is not arti cially augmented(RMSE= 9:8
(MAE= 75, SD= 6:3 ). Finally, our model achieved an accuracy
on the untouched validation set witRMSE= 117 (MAE= 9.5 ,
SD= 6.9 ).

4.5 Time Performance

We carried out a performance test on a Nexus 5 phone to determine
the prediction time. We ran 4,000 predictions and measured the
time for the preprocessing and the model prediction itself. The
preprocessing took an average of 10.45 @B € 2:51), and the
model itself another 14.09 mSD = 3:51). Because we receive
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5.1 Sliders

Sliders often span across the whole screen and can be cumbersome
for users as they need to stretch their thumb across the whole screen.
Here, we envisionThumbPitcho be an additional input method to
change the slider value. In detail, we envision the thumb's angle
to be mapped to the slider position. Thus, no change in position
needs to be performed by the user; a simple change in angle will
modify the position and, thus, the input.

5.2 Zoom

Pinch-to-zoom has become a ubiquitous gesture to zoom into maps,
images, and various other content. However, the gesture to zoom
requires two ngers on the screen, which is nearly impossible
in a one-handed interaction. Here, we envisidiumbPitchcan
substitute the traditional pinch-to-zoom gesture, enabling easy
zoom interaction even in encumbered and mobile scenarios.

5.3 Drawing

Today, the user either needs external hardware (e.g., Apple Pencil
or Microsoft Surface Dial) or needs to change the settings through
the user interface provided by the drawing app for rich input such
as di erent stroke colors or stroke width. WithThumbPitchwe
enable an enriched input that allows the user to change various
parameters on the y. For instance, we envisidrhumbPitcho
change the stroke color or stroke width as the thumb angle can be
mapped to the width or color wheel (see Figure 6).

5.4 Context Menu Selection

As phone sizes are increasing, reachability issues are getting more
prominent. We envision an implementation where the thumb's up
and down movement can be used to scroll through the content
on the screen. ThusThumbPitchallows scrolling through menu
items and selecting an option on release without encountering
the reachability issues associated with larger phones. Moreover, it
allows convenient scrolling on devices with small screens, such as
smartwatches.

the capacitive images every 50 ms (20 FPS), we can estimate the>-5 Up/Down Pitch Gesture

thumb's pitch for each retrieved capacitive image, allowing us to
run ThumbPitchat maximum performance.

5 USE CASES

We envision thatThumbPitctwill enrich touch-based interaction
for a wide range of scenarios. We argue tietumbPitctcan over-
come the limitations of previously proposed interaction techniques
and, for the rst time, support not only two-handed but also one-
handed interactions. MoreoveFhumbPitctsupports a large input
range compared to 2-level input, such as ForceTouch by Apple and
KnuckleTouch B4. This allows the user to perfornThumbPitch

in both one-handed and two-handed scenarios, giving the user the
option to use both hands if possible but also enabling interaction in
mobile and encumbered situations, e.g., while carrying a shopping
bag. In the following, we present several use cases in which we
envisionThumbPitcho outperform previously proposed methods
to highlight the possibilities in user interface design.

ThumbPitctcan also o er extra dimensions for gestures. As the
thumb range is limited 25, performing gestures with the thumb
can bedi cult, especially in one-handed scenarios. ThlikumbPitch
can enrich the gestures' limited vocabulary.

6 EVALUATION STUDY

In this next section, we evaluatthumbPitchas an additional input
dimension to enrich touch-based interactions. Here, we compared
ThumbPitchagainst the standardouchinput. Therefore, we im-
plemented three use-cases, which allowed us to acquire in-situ
feedback about usinghumbPitchin Drawing MapZoomandSlider
tasks.

6.1 Apparatus

For the rst part of the study, we used the same setup as in the rst
study: an LG Nexus 5 for capacitive recording and an OptiTrack
system for ground truth touch collection.
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