
Fixation Detection for Head-Mounted Eye Tracking
Based on Visual Similarity of Gaze Targets

Julian Steil
Max Planck Institute for Informatics,

Saarland Informatics Campus
Germany

jsteil@mpi-inf.mpg.de

Michael Xuelin Huang
Max Planck Institute for Informatics,

Saarland Informatics Campus
Germany

mhuang@mpi-inf.mpg.de

Andreas Bulling
Max Planck Institute for Informatics,

Saarland Informatics Campus
Germany

bulling@mpi-inf.mpg.de

ABSTRACT
Fixations are widely analysed in human vision, gaze-based interac-
tion, and experimental psychology research. However, robust fixa-
tion detection in mobile settings is profoundly challenging given
the prevalence of user and gaze target motion. These movements
feign a shift in gaze estimates in the frame of reference defined
by the eye tracker’s scene camera. To address this challenge, we
present a novel fixation detection method for head-mounted eye
trackers. Our method exploits that, independent of user or gaze
target motion, target appearance remains about the same during a
fixation. It extracts image information from small regions around
the current gaze position and analyses the appearance similarity
of these gaze patches across video frames to detect fixations. We
evaluate our method using fine-grained fixation annotations on a
five-participant indoor dataset (MPIIEgoFixation) with more than
2,300 fixations in total. Our method outperforms commonly used
velocity- and dispersion-based algorithms, which highlights its
significant potential to analyse scene image information for eye
movement detection.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; Human computer interaction (HCI);
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1 INTRODUCTION
Fixations are one of the most informative and thus important char-
acteristics of human gaze behaviour. Given the strong link between
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Figure 1: (a) Our method exploits that, independent of user
or gaze target motion prevalent in mobile settings, target
appearance remains about the same during a fixation. To
detect fixations, it analyses the visual similarity of small
patches around each gaze estimate. (b) Existing methods
that only use gaze estimates face challenges due to these es-
timates shifting in the scene camera coordinate system.

fixations and overt visual attention, human fixations have been
widely studied in experimental psychology, such as in the context of
mind wandering [Faber et al. 2017], reading comprehension [Li et al.
2016], or face processing [Dalton et al. 2005]. Fixations have also
been used to understand users’ visual attention [Nguyen and Liu
2016], to assess on-line learning [D’Mello et al. 2012] or to enhance
the awareness in computer-mediated communication [Higuch et al.
2016]. Recent efforts have investigated using information on fixa-
tions to user behaviour modelling [Bulling et al. 2011; Bulling and
Zander 2014; Steil and Bulling 2015] and personality traits [Hoppe
et al. 2015, 2018]. The development of methods to automatically
detect fixations in continuous gaze data has consequently emerged
as an important and highly active area of research [Hessels et al.
2017; Salvucci and Goldberg 2000].With head-mounted eye trackers
becoming ever more lightweight, accurate, and affordable [Kassner
et al. 2014; Tonsen et al. 2017], fixation detection is also becoming
increasingly important for mobile settings [Kurzhals et al. 2017].

Fixation detectionmethods can be broadly classified as dispersion-
or velocity-based [Holmqvist et al. 2011] as well as data-driven [Ur-
ruty et al. 2007].While dispersion-basedmethods analyse the spatial
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scattering of gaze estimates within a certain time window, velocity-
based methods detect fixations by analysing point-to-point veloci-
ties of the gaze estimates. A key property of all of these methods is
that they rely solely on gaze data, i.e. they typically do not take any
other information into account, such as the target being looked at.
This approach works well for remote eye trackers used in station-
ary settings in which the estimated gaze is analysed within a fixed
frame of reference, i.e. the screen coordinate system.

In contrast, fixation detection for head-mounted eye trackers and
mobile settings is significantly more challenging. Gaze estimates
are typically given in the eye tracker’s scene camera coordinate
system but this frame of reference changes constantly with respect
to the world coordinate system as the wearer moves around or
turns his head while looking at a target (see Figure 1). As a result,
gaze estimates during a fixation seem to shift within the scene
camera coordinate system, resulting in failures of fixation detection
methods that rely solely on gaze information. Maintaining gaze
on a particular real-world target consequently involves a complex
combination of fixations, smooth pursuit, and vestibulo-ocular re-
flex movements. In this work we use the term fixation to jointly
refer to users’ visual focus of attention [Massé et al. 2017] on a gaze
target irrespective of scene and head motion.

To the best of our knowledge, we are the first to address the
challenging task of fixation detection for head-mounted eye track-
ing. The specific contributions of our work are three-fold. First, we
propose a novel fixation detection method that is robust to user and
gaze target movements prevalent in mobile everyday settings. Our
method leverages visual information of the scene camera image
and exploits that, independent of user or gaze target motion, target
appearance remains about the same during a fixation. Specifically,
our method considers image information from small regions around
the current gaze position and analyses the appearance similarity
of these gaze patches across video frames using a state-of-the-art
deep convolutional image patch similarity network [Zagoruyko and
Komodakis 2015]. Second, we annotate a subset of a recent mobile
eye tracking dataset [Sugano and Bulling 2015] with fine-grained
fixation annotations – the first of its kind with annotations at the in-
dividual video frame level. Our MPIIEgoFixation dataset is publicly
available at https://www.mpi-inf.mpg.de/MPIIEgoFixation/. Third,
through experimental evaluations on this dataset, we show that our
method outperforms widely used, state-of-the-art dispersion-based
and velocity-based methods for fixation detection.

2 RELATEDWORK
Our work is related to previous works on 1) fixations in mobile
settings, 2) computational methods for fixation detection, and 3)
applications that used gaze patches.

2.1 Fixations in Mobile Settings
With the proliferation of head-mounted eye trackers, an increasing
number of studies have been conducted in mobile settings. Fixation
behaviours together with other eye movement characteristics have
been exploited for activity recognition [Bulling et al. 2011; Steil and
Bulling 2015]. Spatial-temporal patches around fixations have been
used to capture the joint visual attention of multiple users [Huang
et al. 2017; Kera et al. 2016]. Visualising the fixation location has

been shown to be effective in enhancing situation-awareness for
remote collaboration in mobile settings [Higuch et al. 2016]. Re-
searchers have also investigated fixation-based visualisation meth-
ods to facilitate egocentric video understanding [Blascheck et al.
2016], user interest analysis [Kurzhals et al. 2017], or video sum-
marisation [Xu et al. 2015]. Despite the significant potential and
ever-increasing interest in head-mounted eye tracking, works have
up to now used fixation detection methods originally developed
for remote eye trackers and stationary settings. To the best of our
knowledge, we now present the first method specifically geared to
mobile settings for tracking users’ fixations without a fixed frame
of reference, only using the similarity of the gaze patches.

2.2 Fixation Detection Methods
Existing fixation detectionmethods can be categorised into velocity-
based, dispersion-based, and data-driven approaches, the first being
the most widely used [Andersson et al. 2017]. These methods have
often been used to discriminate fixation from smooth pursuit (eye
tracing a moving target) and saccadic movements (shifting gaze
between one fixation and another). Since fixations, smooth pur-
suits, and saccades are characterised by different velocities of eye
movement, velocity-based methods have usually defined a velocity
threshold to detect fixations from saccades [Salvucci and Goldberg
2000], where eyemovements with a velocity below the threshold are
classified as fixations and above as saccades. If needed, an additional
threshold is used to discriminate smooth pursuit from saccades [Fer-
rera 2000; Komogortsev and Karpov 2013]. Dispersion-based algo-
rithms assume that gaze estimates belonging to a fixation should
locate in a cluster [Blignaut 2009; Holmqvist et al. 2011; Salvucci
and Goldberg 2000]. Therefore, these algorithms measured the de-
gree of gaze estimates’ scattering to identify fixations. A number of
recent research has applied data-driven approaches to improve eye
movement detection, including smooth pursuits [Vidal et al. 2012a]
and fixations. For fixations, prior works have proposed the use of
projection clustering [Urruty et al. 2007], principle component anal-
ysis [Kasneci et al. 2015], eigenvector analyses [Berg et al. 2009],
Bayesian decision theory [Santini et al. 2016], or detailed geometric
properties of signal components [Vidal et al. 2012b]. Only few pre-
vious works have addressed the challenging task of discriminating
between multiple eye movement types at once [Hoppe and Bulling
2016; Zemblys et al. 2017]. However, all of these methods have
relied on the gaze estimates alone to identify fixations, regardless
of the visual information available on the gaze targets. Please note
Kinsman has pointed out that regular eye movement detectors are
unsuitable for mobile eye tracking scenarios [Kinsman et al. 2012]
and improved the velocity-based approach [Pontillo et al. 2010]
to compensate ego-motion from scene motion using Fast Fourier
Transformation, which could be much more computationally ex-
pensive than our method.

2.3 Applications Using Gaze Patches
Gaze patches have been analysed in different applications. For in-
stance, Shiga et al. extracted visual features from gaze patches for
activity recognition of the wearer [Shiga et al. 2014] and Sattar
et al. used gaze patches to predict the category and attributes of
targets during visual search [Sattar et al. 2017, 2015]. Another line
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Figure 2: Overview of ourmethod. Inputs to ourmethod are scene camera frames with corresponding gaze estimates. First, our
method (a) extracts gaze patches around the gaze estimates and (b) then computes similarity values with a state-of-the-art deep
convolutional image patch similarity network [Zagoruyko and Komodakis 2015]. (c) In the next step, the similarity values
are thresholded to classify patch pairs into fixation candidates. (d) Finally, fixation candidates are checked for a minimum
length [Irwin 1992].

of works exploited gaze patches for eye tracking data visualisation
as well as video summarisation and segmentation. For example,
Tsang et al. created a tree structure of gaze patches to visualise
sequential fixation patterns [Tsang et al. 2010]. Pontillo et al. pre-
sented an interface with visualisation of gaze patches to facilitate
the semantic labelling of data [Pontillo et al. 2010]. Kinsman et
al. performed a hierarchical image clustering of gaze patches so
as to accelerate the analysis of eye tracking data [Kinsman et al.
2010]. Similarly, Kurzhals et al. represented a video by gaze patches
to show temporal changes in viewing behaviour [Kurzhals et al.
2016a,b, 2017]. However, all of these studies detected fixations us-
ing conventional techniques and analysed gaze patches of these
detected fixations. Anantrasirichai et al. trained an SVM classifier
to identify fixations for low-sample-rate mobile eye trackers based
only on means and variances of CNN layer activations, thus much
of the detailed spatial information was not used [Anantrasirichai
et al. 2016]. In contrast, we are the first to propose and demonstrate
a gaze patch approach for fixation detection directly, without model
training and eye movement features extraction.

3 DETECTING FIXATIONS IN MOBILE
SETTINGS

As mentioned before, fixation detection in gaze data recorded using
head-mounted eye trackers faces a number of unique challenges
compared to remote eye tracking. Gaze estimates are typically
represented by a 2D coordinate in the screen coordinate system.
Consequently, dispersion-based methods can detect fixations by
measuring the spatial scattering of gaze estimates over a certain
time window. That is, a new fixation occurs when the recent gaze
estimates are too far away from the previous location. Similarly, the
velocity-based method detects the end of a fixation when there is a
large location change of gaze estimates over a certain time interval.

A key requirement for the current fixation detection methods is
that they require a fixed frame of reference for the gaze estimates, i.e.
the screen coordinate system in the case of stationary eye trackers.
However, mobile settings are characterised by their naturalness and
mobility. Gaze estimates normally refer to the egocentric camera
coordinate system, which moves along with the wearer’s head and
body motion in natural recording. As a result, gaze estimates in

the egocentric camera coordinate vary when the head moves, even
though the visual attention of the wearer remains fixed on an object.
Thus, we exploit the visual similarity of the gaze target.

3.1 Patch-Based Similarity
The core idea of our method is based on the observation that the
appearance of gaze target stays similar regardless of head motion.
Therefore, given the inputs of egocentric video and gaze estimates
from the head-mounted eye tracker, our method compares the
sequential gaze patch information around each gaze estimate to
determine fixations (see Figure 2). Specifically, our method takes the
egocentric video and the corresponding sequence of gaze estimates
as input. It first extracts gaze patches with the gaze estimate as
centre in each video frame and feeds each pair of gaze patches
from consecutive frames to a CNN network that measures the
patch similarity. We then determine the fixation segments based
on the sequence of similarity measurement. Being independent of
the frame of reference, our method can be robust to head motion
in mobile settings and thus address the shortcomings of existing
fixation detection methods. The following subsections detail each
step of our method.

Extracting Gaze Patches from Video Stream. In the first step, our
method extracts a gaze patch from each frame in the egocentric
video, using the location of a gaze estimate as the patch centre.
The egocentric videos we use in this work have a resolution of
1280×720 pixels, which covers 78.44 horizontal and 44.12 vertical
visual degree. The size of a gaze patch is set to 200x200 pixels. Prior
studies on video summarisation have extracted patches of 100x100
pixels, which corresponds to the size of fovea [Kurzhals et al. 2017].
In contrast to their purpose of scene understanding, gaze patches in
our study are used to represent the human visual focus of attention
in fixations. To simulate the spotlight effect of fixations [Eriksen
and Hoffman 1972] that a human has clearer vision in the focus
and more blurry vision in the peripheral area, we exploit a larger
size of patch (200x200 pixels) for similarity comparison. To this
end, the patch comparison we use focuses more on the central
region and less on the fringe area. In accordance with the size of
fovea suggested by Kurzhals et al. [Kurzhals et al. 2017], the central
region in our gaze patch is 100x100 pixels. If the gaze patch does
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Figure 3: Example sequence of similarity values calculated by the deep convolutional image patch similarity network, ground
truth fixation events (black), and detected fixations (blue). The example patches are from two short fixations (1), (2) and a
longer fixation (3). We see that the visual content of gaze patches, even shortly before or after a fixation, differs considerably
from those within the fixation.

not fit into the camera’s field of view, the gaze patch is cut so that
it only covers the scene content until the border. Please note that
we discard scene frames with no valid gaze estimate, as the eye
tracking would fail for these.

Computing the Similarity of Gaze Patches. Next, we compute
the similarity between gaze patches in each pair of consecutive
frames. To account for the spotlight effect in patch similarity com-
parison, we adopt the convolutional neural network (2ch2stream)
by Zagoruyko et al. [Zagoruyko and Komodakis 2015] that height-
ens the importance of the patch central region in comparison. More
specifically, this network uses a two channel structure, one of which
processes the holistic patch information and the other of which
analyses only the central region. This network provides unbounded
similarity values (−1,∞), and it is trained on the Notredame dataset
[Winder and Brown 2007]. In practice, we resize the gaze patches
from 200x200 pixels captured from the egocentric video (1280×720)
to 64x64 pixels and feed them into 2ch2stream.

Determining Fixation from Patch Similarity. Once we obtain the
similarity sequence of patch pairs given by 2ch2stream, we identify
fixations using a light-weight method. Specifically, we use a thresh-
olding method to determine whether consecutive patches belong to
the same fixation segment. If the similarity of consecutive patches
is higher than the similarity threshold, their corresponding time pe-
riods are grouped together. This process groups similar sequential
patches together, and each group of patches corresponds to one
fixation. Finally, we run a duration validation to verify that each
resulting fixation should be at least 150ms (cf. [Irwin 1992]).

4 DATASET
We have evaluated our method on a recent mobile eye tracking
dataset [Sugano and Bulling 2015]. This dataset is particularly suit-
able because participants walked around throughout the recording
period. Walking leads to a large amount of head motion and scene
dynamics, which is both challenging and interesting for our de-
tection task. Since the dataset was not yet publicly available, we
requested it directly from the authors.

The eye tracking headset (Pupil [Kassner et al. 2014]) featured a
720p world camera as well as an infra-red eye camera equipped on

an adjustable camera arm. Both cameras recorded at 30 Hz. Egocen-
tric videos were recorded using the world camera and synchronised
via hardware timestamps. Gaze estimates were given in the dataset.

4.1 Data Annotation
Given the significant amount of work and cost of fine-grained fixa-
tion annotation, we used only a subset from five participants (four
males, one female, all ages 20–33). This subset contains five videos,
each lasting five minutes (i.e. 9,000 frames each). We asked one
annotator to annotate fixations frame-by-frame for all recordings
using Advene [Aubert et al. 2012]. Each frame was assigned a fixa-
tion ID, so that frames belonging to the same fixation had the same
ID. We instructed the annotator to start a new fixation segment
after an observable gaze shift and a change of gaze target. Similarly,
a fixation segment should end when the patch content changes no-
ticeably, even though the position of the gaze point might remain
in the same position in the scene video. In addition, if a fixation
segment lasted for less than five consecutive frames (i.e. 150ms), it
was to be discarded. During the annotation, the gaze patch as well
as the scene video superimposed with gaze points were shown to
the annotator. The annotator was allowed to scroll back and forth
along the time line to mark and correct the fixation annotation.

An example sequence containing the annotated ground truth
and detected fixations based on the corresponding similarity values
is shown in Figure 3. The figure shows example gaze patches from
two short and a longer fixation as well as gaze patches before and
after a detected fixation. We see that the visual content of gaze
patches, even shortly before or after a fixation, differs considerably
from those within the fixation.

4.2 Dataset Statistics
To better understand the fixation behaviours in mobile settings, we
computed fixation statistics based on ground truth annotation. We
also measured head motion by calculating optical flow within the
boundary region (100 pixels) of the egocentric videos. We empiri-
cally set a flow threshold of 2◦ to capture the large head motion.
Similarly, we defined a visual angular threshold of 0.5◦ to capture
large gaze shifts from the sequence of gaze estimates.
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We see that almost three quarters of the time (74%), eyes were in
fixation across different participants. In addition, large head motion
and gaze shifts occurred about 85% and 80% of the time during these
fixation segments, respectively. These numbers indicate that fixa-
tions and head motion were pervasive in natural mobile recordings.
More importantly, they suggest that the reliability of conventional
fixation detection that relied on a fixed coordinate system should
be questioned for a clear majority of the time. Our experimental
evaluation provides a more in-depth performance comparison of
our method against different fixation detection methods.

5 EVALUATION
In this section, we compare our proposed method against com-
monly used dispersion-based and velocity-based methods. As for
the dispersion-based method, we have adopted the implementation
available in Pupil [Kassner et al. 2014]. The method uses a disper-
sion threshold to identify fixations as groups of gaze estimates
that locate closely in the egocentric camera coordinate system. For
the velocity-based method, we have reimplemented Salvucci and
Goldbergs’s velocity-threshold identification algorithm [Salvucci
and Goldberg 2000]. The method uses a threshold to segment fixa-
tions when the velocity of the gaze estimated point changes rapidly.
Given that our method also uses a similarity threshold for fixation
detection, we evaluate the performance of our method against the
dispersion- and velocity-based methods for increasing thresholds,
respectively. Please note, we followed the practice of defining the
minimal duration of fixation as 150ms [Irwin 1992], which has been
used consistently across the different methods.

5.1 Evaluation Metrics
To provide a thorough evaluation on the performance of our fixation
detection, we break down the errors in fixation detection events
and analyse the underlying issues of the proposed method against
the conventional fixation detection methods. We use the evaluation
metrics originally developed byWard et al. for fine-grained analysis
of activity recognition systems. A comprehensive explanation of
the different evaluation metrics, i.e. their meaning and how they are
calculated, is beyond the scope of this paper. We refer the interested
reader to the original paper [Ward et al. 2006]. In a nutshell, in
addition to the Correctly classified (C) fixation events, we have also
studied the errors from three main perspectives, which we briefly
discuss as follows:

(1) Deletion (D) and insertion (I’): Both belong to the classical errors
in event detection. In our case, a deletion error indicates the

failure to detect a fixation, while an insertion means a fixation
is detected where there is none in the ground truth.

(2) Fragmentation (F) andmerge (M’): These are associated with sen-
sitivity of event segmentation. A fragmentation error describes
a single fixation in ground truth being detected as multiple ones.
In contrast, a merge error depicts multiple fixations in ground
truth being recognised as being one by the method.

(3) Overfill (O) and Underfill (U): These errors are related to the
erroneous timing of fixation detection. An overfill error denotes
that the identified fixation covers too much time compared to
the ground truth. As the opposite, an underfill indicates that
the detected fixation fails to cover parts of the ground truth.

To better describe the fragmentation and merge errors, we further
refer to a "fragmenting" output (F’) as an output, i.e. the identified
fixation, that belongs to one of the detected fragments of a large
ground truth fixation, and a "merging" output (M’) as a large iden-
tified fixation that covers multiple ground truth fixations. In other
words, F’ and M’ are counted from the output side, while F and M
are counted from the ground truth. We also group events that are
both, fragmented and merged, as FM; similarly, an output event
that is both fragmenting and merging as FM’. An example overview
of all event-based error cases is shown in Figure 4.

As in event detection, the most important implication often
comes from the number of correctly classified events (C) as well as
the over- and underestimated events, i.e. insertion (I’) and deletion
(D). We therefore adapt a unified metric (CDI’) [Bulling et al. 2012]
to assess these three important aspects:

CDI ′ = C − D − I ′ (1)

Using the unified and the individual measurements as performance
metrics for fixation detection not only sheds light on how a fixation
has been correctly detected as an event, but also endows us with a
more in-depth understanding of the detection reliability of event
characteristics, such as detection delay and duration error.

5.2 Fixation Detection Performance
Our evaluation begins with an overall fixation detection perfor-
mance with respect to different important event-based metrics,
including the unified metric CDI’, insertion (I’), deletion (D) as well
as fragmenting output (F’) and merge (M) of ground truth. There
are interesting findings when we evaluate the performance change
for increasing thresholds for each method. The performance of the
interesting metrics are selected and shown in Figure 5.
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Figure 5: Performance of fixation detection of our pro-
posed method as well as the velocity- and dispersion-based
methods over sweeps of their threshold parameters. Black
dashed lines indicate the thresholds recommended for the
velocity-based (10◦/sec and 30◦/sec [Holmqvist et al. 2011])
and dispersion-based methods (1◦ [Eriksen and Hoffman
1972]). Black squares mark the best performing threshold
for each method.

First, comparing across the methods, we see that our method
achieves the highest score of the unified metric. It reaches approx-
imately 1,400 for CDI’, while the numbers of the velocity- and
dispersion-based approaches are around 1,200. Although the op-
timal thresholds (shown in black squares) for conventional tech-
niques also lead to a high CDI’ number, these thresholds are surpris-
ingly large compared to the suggested values (represented in the
black vertical lines) in traditional stationary settings. Interestingly
and as expected, the commonly used velocity and dispersion thresh-
olds [Eriksen and Hoffman 1972; Holmqvist et al. 2011] correspond
to only poor performances in mobile settings, which are generally
associated with a large number of deletion (D) and fragmenting
output (F’), and more importantly, a very low number of the unified
metric (CDI’).

Most interestingly, we see that our method performs robustly for
the unified metric (CDI’) as well as for individual metrics. As the
similarity threshold increases from -0.95 to 1.15, CDI’ rises steadily,
and the rest of individual metric stays stable without significant
variations. Furthermore, there is a very wide range of acceptable
thresholds for our method. In contrast, performance of the velocity-
and dispersion-based counterparts changes considerably with their
thresholds.

It is also interesting to note that the behaviours of all the thresh-
olding methods toward the change in threshold are in good agree-
ment. In particular for the velocity- and dispersion-based methods,
almost all the curves have similar trends and shapes. That is, a
threshold that is over restrictive for fixation detection gives a high
number of deletions (D) and a mounting number of fragmenting
output (F’). On the other hand, a threshold that is over loose for
fixation detection yields the growth of merge error (M). In con-
trast to the robustness of our method, conventional techniques fail
to present a wide range of acceptable thresholds that can lead to
overall good performance.

5.3 Influence of Key Parameters on
Performance

In addition to the previous discussion on how the important CDI’
performance varies for increasing thresholds, respectively, this
section scrutinizes all types of fixation detection errors, under the
optimal parameter with respect to CDI’ for each method.

Figure 6 shows the event analysis diagram (EAD) of fixation
detection results of our method, velocity-, and dispersion-based
methods. Starting from the most important metrics, we see that
the number of correctly detected (C) fixation of our method (1,650)
clearly exceeds that of the velocity- (1,499) and dispersion-based
(1,379) methods. For insertion error (I’), our method (77) can also
outperform its counterparts (157 and 90, respectively) by sacrificing
a marginal performance decrease of deletion error (D).

As regards the fragmentation error from both sides of ground
truth (F) and output (F’), the velocity-based method gives the best
result. In contrast, the velocity-based method performs worst in
terms of merge error. This is quite intuitive, as large fragmentation
error tends to correlate with small merge error, and vice versa. It is
encouraging that our method gives the minimal overall fragmen-
tation and merge errors (F+FM+M+M’+FM’+F’=1394), compared
to the velocity-based (1,486) and dispersion-based (2,108) methods.
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Figure 6: Event analysis diagram (EAD) for (a) our proposed patch-based, (b) the velocity-based, and (c) the dispersion-based
fixation detection method for the best-performing thresholds shown in Figure 5. The EAD shows an overview of the typical
errors occurring in continuous event detection, i.e. the number of correct detections (C), merges (M, M’), fragmentations (F,
F’), deletions (D), and insertions (I’). The corresponding overfills (O) and underfill (U) errors are shown on the right.

With respect to the timing errors, we see that our method results
in the lowest overfill error (3%) and a moderate underfill error (7%).

In conclusion, the proposed method is able to precisely identify
the majority of ground truth annotated fixations, with an overall
minimal number of fragmentation and merge cases and an accept-
able number of timing errors.

5.4 Example Detections
One important feature of our proposed approach lies in that it can
be robust to blurry image inputs, which are a common problem
when using egocentric scene cameras. For example, participants
were mobile most of the time in our evaluation dataset. Blurry
images occurred frequently when users directed their gaze through
intentional head or body motion as well as when users fixated but
compensated head motion through eye movement.

The examples in Figure 7 show detection cases where ourmethod
can successfully identify fixations while conventional methods fail.
In order to maintain the privacy rights, we have blurred observable
logos and show only blurry faces of people in the scene. In the im-
age sequence of Figure 7a, a participant is interacting with another
person and nodding, resulting in a group of widely scattered gaze
estimates. However, our method can identify the fixation, as the
gaze target person remains in gaze patches throughout the process.
Figure 7b shows a sequence where the participant is walking along
the corridor while fixating on a girl leaning against the door frame.
Since the participant is moving forward with his head turning left
to follow the girl, the path of gaze estimates appears in a line. Con-
ventional fixation detection methods in this case would not detect
the fixation due to the obvious shift of gaze estimates. In Figure 7c,
the participant is moving closer to a poster of chemical formulas
and shaking his head at the same time. The head motion is so large
that conventional methods fail. Although the image content looks
similar and blurry, our proposed method is still able to detect the
fixation correctly based on the visual similarity of gaze patches.

6 DISCUSSION
This study points out an important but overlooked issue of fixa-
tion detection in mobile settings. Since the coordinate system for
mobile gaze estimates often moves during natural head motion,
eye fixations no longer correspond to a fixed coordinate system of
gaze estimates, as assumed by the existing methods. This change of
setting hampers the velocity- and dispersion-based fixation detec-
tion methods. We are the first to address the challenges of fixation
detection in mobile settings by exploiting the visual similarity of
gaze targets. We also provide the first mobile dataset with fine-
grained fixation annotation for the purpose of this line of studies
(MPIIEgoFixation). In addition, we have suggested appropriate eval-
uation metrics for fixation event detection and have conducted an
in-depth evaluation of our method against the existing widely used
counterparts in mobile settings.

It is encouraging to see that our method can be robust to head
motions. It outperforms the velocity- and dispersion-based methods
with respect to a number of major metrics for fixation event de-
tection, such as correctly detecting events, insertion errors, merge
errors, and overfills. The slightly higher number of deletion er-
rors of our proposed method in comparison to the velocity- and
dispersion-based approaches is a side effect of optimising for the
CDI’ score. There is a general trade-off between deletion and merge
errors that can be determined depending on the particular appli-
cation. In our method, a higher threshold leads to a sharper cut
between frames that belong to a fixation or not, whereas an increas-
ing threshold for the velocity- and dispersion-based approaches
makes these approaches more greedy so that the deletion errors
transit to an increasing number of merge errors that result in higher
overfill errors, whereas our proposed method suffers from increas-
ing underfill errors. Our experimental results also reveal that our
method is much more robust to the parameter value, compared to
the conventional techniques.
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(a) (b) (c)

Figure 7: Example eye tracker scene images with gaze estimates (in red) and corresponding sequences of gaze patches (top) for
cases in which our method successfully detected fixations while the conventional methods failed. Our method robustly deals
with (a) vertical head motion during nodding, (b) horizontal head motion that follows a target of interest while walking down
a corridor, and (c) compensating head movements while walking towards an object.

Given the advance of mobile eye tracking and the emerging
attention to mobile computing, we believe that our method can
open up numerous opportunities for application studies as well
as follow-up gaze behaviour research. Regarding the commercial
potential and application studies, our study meets the need of the
recent exploding interest in augmented reality research and user
experience studies. Our method requires only low computational
cost, thus it is suitable for mobile and portable devices. As regards
the gaze behaviour research, this study sheds light on a proper
fixation detection method in mobile settings and provides guidance
for appropriate evaluation metrics.

As the very first step in addressing the challenge of mobile fixa-
tion detection, we propose a simple yet effective method and have
made a considerable effort in annotation and evaluation. We have
conducted extensive evaluation on our MPIIEgoFixation dataset
with fine-grained fixation annotation. Although this dataset con-
tains only five participants, we have annotations of over 2,300 fixa-
tions and more than 40,000 frames, which are sufficient to properly
evaluate our method.

Given that the goal of this paper is to study the detection of
fixations in mobile settings, we focused on cases where participants
are on the move. In future work we will evaluate our approach on
a novel dataset covering both mobile and stationary settings.

We will also extend our patch-based method by training an end-
to-end neutral network to incorporate additional visual information
such as scene dynamics in a joint framework.

Besides, not taking eye motion as input increases the difficulty of
fixation detection when gaze targets share very similar textures or
completely homogeneous appearances, though this only happened
rarely in our dataset. To address this, we plan to experiment with
an adaptive threshold based on the visual variability of the scene
and gaze patch.

7 CONCLUSION
In this work we have presented a novel fixation detection method
for head-mounted eye trackers. Our method analyses the image ap-
pearance in small regions around the current gaze position, which,
independent of user or gaze target motion, remains about the same

during a fixation. We have evaluated our method on a novel, fine-
grained annotated five-participant indoor dataset MPIIEgoFixa-
tion with more than 2,300 fixations in total. We have shown that
our method outperforms commonly used velocity- and dispersion-
based algorithms, particularly with respect to the total number of
correctly detected fixations as well as insertion and merge event
errors. These results are promising and highlight the significant
potential of analysing scene image information for eye movement
detection – particularly given the emergence of head-mounted eye
tracking and, with it, the increasing need for robust and accurate
gaze behaviour analysis methods.
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