
Appendix A
Additional results

MIT1003 and CAT2000 results
Evaluations on the MIT1003 (Tab. A1) validations set corrob-
orate the utility of pretraining with data generated from the
EMMA cognitive model. Our approach improves over vanilla
MD-SEM in all five metrics. Compared to recent SOTA ap-
proaches that report validation set results on MIT1003, our
approach allows MD-SEM to reach competitive performance
despite the significantly smaller number of parameters.

Our evaluation on CAT2000 (Tab. A2) is restricted to a
comparison with MD-SEM, as reporting validation set results
on CAT2000 is not common in previous work. However,
the evaluation on CAT2000 is another clear indication of the
benefit of pre-training with data generated by EMMA: our
approach is superior to MD-SEM on all 5 metrics.

Category-specific results on CAT2000 validation set
Since the CAT2000 dataset is separated into 20 different image
categories, we could evaluate the performance improvements
of our approach compared to vanilla MD-SEM separately for
each category (Tab. A3). Our approach is outperforms MD-
SEM on every metric among all 20 categories, underlining
the consistency of improvement using the cognitive model.
Figure A1 and Figure A2 showcase some examples of the
various categories. Such qualitative results illustrate that our
approach has a more accurate estimation of salient regions
than vanilla MD-SEM, especially in Fractal, Jumbled, Low
Resolution, Noisy, and Pattern.

SALICON validation visualizations
In the main paper, Table 2 shows a comparison between our
model’s and current SOTA models’ results on the SALICON
test set. In order to qualitatively showcase how our approach
performs compared to the vanilla MD-SEM, we pointed to 3.
Here, in Figure A3 we show additional examples to give a
better intuition of how pre-training with cognitive data helps
to improve saliency prediction on SALICON.

Cognitive Pre-training vs. Computational Cost
Table 1 shows the improvement obtained by our training ap-
proach on the SALICON validation set on lightweight models,
MSI-NET and MD-SEM. For completeness, we additionally
provided the relative improvements gains between low versus
high capacity models, showcasing that high capacity models
do not benefit from cognitive model pre-training (Fig. A4). In
addition, we provide a comparison in terms of absolute results
of our experiments on the SALICON validation set in Tab. A4.

As discussed in the main paper, pre-training on EMMA-
generated data leads to consistent improvements for models
with a relatively low number of parameters (MSI-NET, MD-
SEM), in contrast to the large EML-NET variants. Table A4
shows that EML-NET with DENSE and NASNET backbones
still achieve the best NSS and SIM scores. However, such
large model is outperformed by MD-SEM in AUC, CC and

KL and in AUC and KL by MSI-NET when these models are
pre-trained with EMMA-generated data.

Generalization on Unseen Data
To shed further light on the utility of using EMMA-generated
data alone, we evaluated a variant of MD-SEM that is only
trained on synthetic data and evaluated on ground truth
MASSVIS (Tab. 5). In Table 5 we observe that when only
training on FigureQA-EMMA without finetune on MASSVIS,
the performance is worse than training on FigureQA and fine-
tune on MASSVIS. The result indicates that training only on
synthetic data is not sufficient. This is in line with previous
work by Sood et al. (2020), who observed the same outcome
when using synthetic reading behaviors from the EZ reader
cognitive model to pre-train a text saliency prediction model.
In their work, pre-training on EZ-generated data only led to
worse results than the pure data driven approach. However,
when pre-training with synthetic data and finetuning on ground
truth human data, their saliency model produced best results.
Figure C2 shows qualitative results on the MASSVIS test set.

Appendix B
Method

Extracting Synthetic Saliency Maps
We use the ACT-R Python implementation of EMMA.10 The
input for EMMA consists of a list of bounding box coordi-
nates and the corresponding object labels. The object detection
needs to cover the entire image and contents, since EMMA
selects the next target from nearby bounding boxes. EMMA
then outputs a scanpath as a list of coordinates and timings.
In addition to those in Fig. 2, we show other examples of the
generated saliency maps in Fig. B1. The code for generating
saliency maps will be provided in our final release.

Estimating EMMA Parameters
Although cognitive models hold great promise to improve neu-
ral saliency prediction models, they were so far predominately
applied to low complexity stimuli (Gobet, 1996). To apply
the EMMA cognitive model to real-world images as well as
information visualizations containing varied and potentially
overlapping objects in complex scenes, we specifically op-
timized the models’ parameters for each domain. In detail,
we optimized the following EMMA parameters: eye move-
ment scaling factor, eye movement angle, viewing distance,
decay, retrieval latency and retrieval threshold. As the code for
EMMA does not provide a built-in functionality for parameter
optimization, we resorted to a grid search over the parameter
space. We measured the quality of each set of parameters by
computing the Earth Movers Distance (EMD) between the
EMMA-generated and the ground truth saliency maps. To find
the optimal EMMA parameters for natural images, we make
use of the SALICON dataset. For information visualizations,
we fit EMMA parameters on MASSVIS. The best parameters
are shown in Tab. B2. Notice that values are different for

10https://github.com/jakdot/pyactr

https://github.com/jakdot/pyactr
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Figure A1. A visualization of example images from ten categories of CAT2000 validation set with the corresponding empirical
ground truth maps, and predictions from our approach and the MD-SEM. The qualitative results indicate that the cognitive model
enables the data-driven model to have a more accurate estimation of salient regions.
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Figure A2. A visualization of example images from the other ten categories of CAT2000 validation set with the corresponding
empirical ground truth maps, and predictions from our approach and the MD-SEM.
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Figure A3. More example images from the SALICON validation set with the corresponding empirical ground truth maps, and
predictions from our approach and the MD-SEM.



Table A1
Prediction performance on MIT1003. The backbone network of DeepGazeIIE is densenet201. Best results are highlighted
in bold, second best are underlined. Stars indicate statistical significance of the difference between Ours and MD-SEM (**:
p < .01; ***: p < .001).

Method AUC ↑ CC ↑ KL ↓ NSS ↑ SIM ↑ Params
MSI-NET (Kroner et al., 2020) 0.832 0.741 0.818 2.663 0.602 24.9M
TranSalNET (Lou et al., 2022) 0.912 0.774 0.786 2.921 0.628 72.5M
SAM-ResNet (Cornia et al., 2018) 0.913 0.768 —- 2.893 —- 70.1M
DeepGaze IIE (Linardos et al., 2021) 0.889 0.774 0.516 2.599 —- 104.5M
MD-SEM (Fosco et al., 2020) 0.880 0.683 0.699 2.602 0.549 30.9M
Ours 0.897** 0.761** 0.544*** 2.911** 0.609*** 30.9M

Table A2
Prediction performances of MD-SEM and our approach on the validation set of CAT2000. Best results are highlighted in bold.
Stars indicate statistical significance of the comparison between Ours and MD-SEM (**: p < .01; ***: p < .001).

Method AUC ↑ CC ↑ KL ↓ NSS ↑ SIM ↑
MD-SEM (Fosco et al., 2020) 0.853 0.692 0.328 1.817 0.642
Ours 0.867** 0.782*** 0.219*** 2.074** 0.694***

the two datasets. Therefore, choosing the optimal parameters
separately for each domain is crucial. In fact, if the best
parameter set found on MASSVIS is applied to SALICON,
that would result in an EMD of 1.96 instead of 1.48.

Our work showcases that by modifying parameters of
EMMA, we can in fact improve the simulations across natural
images as well as data visualizations to obtain more human-
like attention according to the average EMD. These findings
are not only interesting for the machine learning community as
a first proof of concept that is possible to simulate human-like
predictions on complex natural images and abstract visual-
izations, but it also indicates to cognitive science researchers
that there is potential to improve EMMA predictions on such
stimulus domains as we for the first time evaluate EMMA
prediction performance on complex, real-world stimuli.

EMMA vs. Random Gaze
Table B1 shows a comparison between EMMA-generated and
randomly generated gaze data on SALICON and MASSVIS.
As reported in the main paper, EMMA-generated gaze data
results in better CC, KL and SIM scores than the randomly
generated gaze.

Appendix C
Synthetic gaze datasets

We release two large scale synthetic gaze datasets, MSCOCO-
EMMA and FigureQA-EMMA. MSCOCO-EMMA con-
tains EMMA-generated scanpaths and saliency maps on the
MSCOCO dataset, based on the optimal EMMA parameters
estimated on SALICON. FigureQA-EMMA contains EMMA-
generated scanpaths and generated saliency maps on the Fig-
ureQA dataset based on EMMA parameters estimated on
MASSVIS. Our novel synthetic datasets are significantly
larger compared to current human saliency datasets (130k
images in MSCOCO-EMMA versus e.g. 15k images in SALI-

CON) and can be a valuable resource for training future neural
saliency prediction models. Table C1 summarizes the details
of our synthetic datasets.

In Figure C1, we show visualizations of samples from
MSCOCO-EMMA and FigureQA-EMMA. According to dif-
ferent parameter sets, the number of bounding boxes, and sizes
of objects in the two datasets (see Figure B2 and Table B2),
EMMA outputs human-like attention data which is specific
to each of the domains. In Table B2 we show the best set of
parameters differs between dataset domains.

We further analyze the impact that the number of ob-
jects in each respective domain has on said parameters (e.g.,
viewing distance, eye movement angle, etc). In Figure B2, we
visualize the relationship between the number of objects per
image and performance of EMMA in terms of Earth Movers’
Distance (EMD). The pattern we observe differs between
natural images (SALICON) and information visualizations
(MASSVIS) domains. As the number of objects increases,
the mean EMD decreases for natural images (SALICON).
However, when there are more than 60 objects in the scene,
the mean EMD increases. For data visualizations (MASSIVS),
for more than 20 objects, as the number of objects increases
the mean EMD increases. We performed separate linear regres-
sions, which were significant on both datasets with p < 0.001.
For SALICON, the linear regression indicated an overall posi-
tive relationship between number of bounding boxes and EMD,
whereas for MASSVIS this relationship is reversed.

Appendix D



Table A3
Performance improvements of our approach over vanilla MD-SEM for 20 categories from the CAT2000 validation set. Stars
indicate statistical significance of the comparison between Ours and MD-SEM (*: p < .05, **: p < .01; ***: p < .001).

AUC ↑ CC ↑ KL ↓ NSS ↑ SIM ↑
Action +0.004 +0.031 -0.035 +0.126 +0.026
Affective +0.010 +0.045 -0.098 +0.169 +0.053
Art +0.008 +0.062 -0.055 +0.138 +0.033
BlackWhite +0.008 +0.062 -0.055 +0.138 +0.033
Cartoon +0.021 +0.104* -0.108* +0.237 +0.050*
Fractal +0.002 +0.092 -0.104 +0.302 +0.049
Indoor +0.021 +0.103* -0.118*** +0.236 +0.048**
Inverted +0.022 +0.080 -0.105* +0.177 +0.050*
Jumbled +0.025 +0.145** -0.127* +0.332* +0.048**
LineDrawing +0.018 +0.097* -0.119** +0.263 +0.059
LowResolution +0.021 +0.192*** -0.260*** +0.643** +0.120***
Noisy +0.010 +0.091 -0.106 +0.267 +0.047
Object +0.005 +0.041 -0.056 +0.182 +0.033
OutdoorManMade +0.013 +0.072 -0.081 +0.184 +0.038
Pattern +0.007 +0.098** -0.102* +0.265 +0.058*
Random +0.015 +0.011 -0.138 +0.323 +0.060
Satelite +0.014 +0.072 -0.078 +0.177 +0.029
Sketch +0.005 +0.026 -0.037 +0.085 +0.030
Social +0.016 +0.078 -0.093 +0.242 +0.056**

Table A4
Saliency prediction performance several SOTA models on the SALICON validation set, with and without pre-training on synthetic
data from EMMA. As well as pre-training only, and evaluated on groundtruth data – without finetuning (FT) on target dataset.
Best results are highlighted in bold, second best underlined, and third best in italic.

Methods AUC ↑ CC ↑ KL ↓ NSS ↑ SIM ↑
MSI-NET 0.855 0.840 0.265 1.784 0.740
MSI-NET with EMMA 0.866 0.886 0.198 1.891 0.776
EML-NET (DENSENET) 0.797 0.873 0.230 1.987 0.769
EML-NET (DENSENET) with EMMA 0.858 0.887 0.250 1.972 0.775
EML-NET (DENSE + NASNET) 0.802 0.890 0.204 2.024 0.785
EML-NET (DENSE + NASNET) with EMMA 0.861 0.891 0.232 1.914 0.780
MD-SEM 0.858 0.843 0.268 1.818 0.732
MD-SEM with EMMA (no FT) 0.660 0.680 0.576 1.455 0.580
MD-SEM with EMMA (ours) 0.865 0.894 0.193 1.891 0.780

Table B1
Comparison of EMMA-generated gaze with randomly generated gaze on SALICON and MASSVIS. Best results are shown in
bold.

Dataset Method CC ↑ KL ↓ SIM ↑

SALICON EMMA 0.432 1.624 0.457
Random Gaze 0.167 2.068 0.332

MASSVIS EMMA 0.4 0.641 0.586
Random Gaze 0.096 1.703 0.307
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Figure A4. Prediction performance of our approach versus data-driven only models on the SALICON validation set. A bar above
zero means an improvement in the respective metric.
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Figure B1. More example images from the SALICON and MASSVIS of synthetic EMMA-based gaze maps versus human
ground truth maps.

Training details
Training details

For comparability, we made use of the official MSI-NET and
MD-SEM code provided by the authors. 11 The only change
introduced by our approach is that we pre-trained on synthetic
gaze data from the EMMA cognitive model, and then finetuned
with standard ground truth human attention data. To analyze
the generalizability of our approach, we performed saliency
prediction on two domains: Natural images and information
visualizations. All experiments were conducted on a single
NVIDIA Tesla V100 GPU with 32 GB VRAM.

For all four datasets, we set the batch size to 8 and
the initial learning rate to 10−5, reducing it by a factor of ten
every two epochs. Models are trained on MSCOCO-EMMA
for 5 epochs, on SALICON for 13 epochs, on CAT2000 for 9
epochs, and on MIT1003 for 15 epochs. We split MSCOCO-
EMMA into 70% train and 30% for validation. For SALICON,
we used the provided splits as 10,000 images in train and 5,000
images in validation set. We split the CAT2000 and MIT1003

data according to previous work (Jia & Bruce, 2020; Kro-
ner et al., 2020). For CAT2000, this results in 1,800 images
(randomly selected 90 per category) for training and 200 for
validation (rest 10 per category). For MIT1003, in accordance
to (Cornia et al., 2018), we obtain 903 training and 100 for
test samples.

We used a batch size of 8 and an initial learning rate of
10−5. We pretrained on FigureQA-EMMA for 15 epochs, and
then fine-tuned on MASSVIS for 8 epochs. For FigureQA,
we split the data into 70% for training and 30% for validation.
For MASSVIS, we split the data into 70%, 10% and 20% for
train, validation and test respectively.

Appendix E
Limitations and future work.

While the EMMA cognitive model led to consistent perfor-
mance improvements, other cognitive models might be even

11https://github.com/diviz-mit/multiduration
-saliency, https://github.com/alexanderkroner/saliency

https://github.com/diviz-mit/multiduration-saliency
https://github.com/diviz-mit/multiduration-saliency
https://github.com/alexanderkroner/saliency


Table B2
Best parameter set for EMMA on natural images and on data visualization images and average number of bounding boxes in
SALICON and MASSVIS.

Parameters SALICON MASSVIS
Eye movement scaling factor 0.1 0.001
Eye movement angle 25 20
Viewing distance 120 140
Decay 0.5 0.5
Retrieval latency 0.4 0.4
Retrieval threshold -2 -2
Images 15000 393
Avg.BBox 37 22
EMD ↓ 1.4835 1.4166

Figure B2. The number of objects versus mean EMD score. Left: SALICON. Right: MASSVIS

Table C1
Statistics for MSCOCO-EMMA and FigureQA-EMMA.

#Images #Scanpaths #Saliency Maps #Avg.BBox
MSCOCO-EMMA 130k 130k 130k 32
FigureQA-EMMA 100k 100k 100k 79

HUMANEMMA EMMA HUMANSynthetic MSCOCO-EMMA Synthetic FigureQA-EMMA

Figure C1. A visualization of example images from our synthetic datasets, MSCOCO-EMMA and FigureQA-EMMA.
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MD-EAMFigure C2. A visualization of example images from the MASSVIS dataset with the corresponding empirical ground truth maps,
predictions from our approach and baseline methods.

better suited for the task. In future work, we plan to address
this limitation by comparing the utility of different cognitive
models (Kieras & Meyer, 1994; Nyamsuren & Taatgen, 2013b;
Rohrer, 2008) when integrated in the training process of neu-
ral saliency prediction approaches. Another limitation to our
work is the use of SALICON to find the optimal parameters
of EMMA. SALICON provides ground truth saliency maps
obtained from mouse tracking data. These saliency maps were
proven to be highly effective for pretaining of saliency predic-
tion networks and also resulted in highly useful parameters for
EMMA. However, it is possible that the use of real gaze data

for the EMMA parameter search might lead to even stronger
performance. Lastly, in our work we focused on free-viewing
scenarios to prove the utility of training with a cognitive model
of visual behavior. EMMA, however, is also capable of pro-
ducing goal-directed behavior. Future work should explore
the capability of EMMA under other paradigms, like visual
search. It would also be interesting to extend our approach to
dynamic stimuli to improve video saliency prediction (Droste
et al., 2020) or even attention prediction in interactive environ-
ments (Vozniak et al., 2022).
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