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1 Sentence Compression Comparison To Previous SOTA

To gain further insight into the comparison between our model and the current state of the art
in sentence compression, we show results of our method and ablations in relation to ablations of
the method by Zhao et al. [4] (see Table 1). In their work, the authors added a “syntax-based
language model” to their sentence compression network with which they obtained the state-of-the-art
performance of 85.1 F1 score. The authors employ a syntax-based language model which is trained
to learn the syntactic dependencies between lexical items in the given input sequence. Together with
this language model, they use a reinforcement learning algorithm to improve the deletion proposed
by their Bi-LSTM model. Using a naive language model without syntactic features their model
obtained a F1 score of 85.0. With their stand-alone Bi-LSTM method in which they do not employ
the reinforce language model policy, they obtain 84.8. In contrast, our method does neither include a
reinforcement-learning based language model nor additional syntactic features. However, our method
is still competitive with the state of the art (achieving a F1 score of 85.0), and arguably might benefit
from additional incorporation of syntactic information in future work.

Table 1: Ablation study results and comparison with the state of the art for sentence compression
generation in terms of F1 score and compression ratio. Also shown is the number of model parameters.
We show that our model, without additional syntactic information as was used in previous methods,
still obtains SOTA performance.

Method F1 CR Params

Zhao et al (2018)
LSTM implementation 84.8 0.40 —
Evaluator LM 85.0 0.41 —
Syntax-Based Evaluator LM 85.1 0.39 —

This paper

Baseline (BiLSTM) 81.3 0.39 12M
No Fixation 83.4 0.38 129M
Random TSM Init 83.7 0.38 178M
TSM Weight Swap 83.8 0.38 178M
Frozen TSM 83.9 0.37 178M
Ours 85.0 0.39 178M

2 Ablation Study – Attention Maps

To shed more light onto the adapted TSM predictions for the conditions in our ablation study, we
present saliency and neural attention maps for the conditions Random TSM Init and TSM Weight
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Figure 1: Additional paraphrase generation attention maps from our ablation study, for both sub-
networks (TSM predictions and upstream task attention) in our joint architecture. We show the
TSM fixation predictions (left in blue) over epochs (last epoch is our converged models). We show
the two-dimensional neural attention maps (right), showing the Random TSM Init (top) and TSM
Weight Swap (bottom) model from our ablation study. The two-dimensional maps show the input
sequence (horizontal axis) and the predicted sequence (vertical axis). We show the temporal TSM
predictions over epochs, in order to depict how the fixation predictions change while training. The
fixation predictions (for each epoch, left) are computed over words in the input sequences and then
are integrated into the neural attention mechanism which in turn is used to make a prediction (vertical
axis, right).

Swap. In Figure 1, we show that the adapted saliency predictions (blue, left showing) for paraphrase
generation, between the two conditions (top vs. bottom) vary with respect to the words which are
predicted to be most salient and the temporal adaptation during training. The last epoch is from
the converged models, respectively. There exist notable differences in the adapted TSM predictions
for the two ablations. However, we assume they do not play a role in performance between these
two conditions, as these performance differences are not statistically significant. However, these
conditions do perform significantly worse than our model (see paper for results). As shown in the
paper, our model allocates the most attention to the word “travel” in the example sentence. This is the
word that is changed in the paraphrase output, indicating that the our adapted TSM can effectively
guide the paraphrase generation system. Figure 2 shows the adapted saliency predictions for the
sentence compression task. The differences between both conditions are less distinct, with minimal
temporal variation in the word saliency predictions. As with the paraphrase generation models,
performance differences between the two ablations are not statistically significant. Compared to the
saliency output for our model (shown in the paper), we observe that our model more equally allocates
attention to the part of the sentence that is going to be deleted.
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Figure 2: Additional sentence compression attention maps from our ablation study, for both sub-
networks (TSM predictions and upstream task attention) in our joint architecture. We show the
TSM fixation predictions (left in blue) over epochs (last epoch is our converged models). We show
the two-dimensional neural attention maps (right), showing the Random TSM Init (top) and TSM
Weight Swap (bottom) model from our ablation study. The two-dimensional maps show the input
sequence (horizontal axis) and the predicted sequence (vertical axis). We show the temporal TSM
predictions over epochs, in order to depict how the fixation predictions change while training. The
fixation predictions (for each epoch, left) are computed over words in the input sequences and then
are integrated into the neural attention mechanism which in turn is used to make a prediction (vertical
axis, right).

While the 2d neural attention maps for the example sentence in the paraphrase generation task are
similar for Random TSM Init and TSM Weight Swap, they differ clearly from the corresponding
neural attention maps for our model (shown in the paper). Similarly, the 2d neural attention maps
for sentence compression (Figure 2, right) are rather similar for Random TSM Init and TSM Weight
Swap. However, the corresponding neural attention map for our method presented in the paper is
more spread out and additionally allocates more attention on the position in the input sentence from
which on the network decides to delete words. Taken together, these results illustrate the differences
in neural attention that are connected to the superior performance of our full model over the ablation
conditions.

3 Part of Speech Distributions – Content vs Function Words

In our paper we showed that our model and humans are significantly correlated with respect to
gaze durations over part of speech tag (POS) distributions. We use this measure as POS tags
have been shown to be good predictors of fixation probabilities [1, 3]. In Figure 3, we provide an
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additional analysis on this matter. We group together the fixation duration predictions over content
words (adjective, adverb, noun, and verb) and the fixation duration predictions over function words
(conjunction, pronoun, determiner, numbers, adposition, and particles), for both human gaze and
our model predictions (normalized between 0 to 1). In the figure, we show that our model predicts,
similarly to humans, that content words are more informative than function words.
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Figure 3: Per-sentence normalized gaze durations on content words versus function words for our
TSM model and human gaze data across different corpora.
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4 Links to Corpora

Here we provide the links for all publicly available corpora used. Note, due to licensing restrictions,
the Dundee Corpus [2] is only available by directly contacting the authors.

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://github.com/google-research-datasets/sentence-compression
https://cs.nyu.edu/~kcho/DMQA/
https://osf.io/sjefs/
https://expsy.ugent.be/downloads/geco
https://www.perceptualui.org/publications/sood20_conll/
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