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Figure 1: Previous methods require experts to manually annotate meaningful sub-goals for hierarchical reinforcement learning
(HRL) agents. We propose automatic sub-goal extraction from human eye gaze, yielding a more robust and sample-efficient
HRL agent that solves the first room of Montezuma’s Revenge from the Atari2600 benchmark after only 625K steps.

ABSTRACT
While deep reinforcement learning (RL) agents outperform hu-
mans on an increasing number of tasks, training them requires data
equivalent to decades of human gameplay. Recent hierarchical RL
methods have increased sample efficiency by incorporating infor-
mation inherent to the structure of the decision problem but at
the cost of having to discover or use human-annotated sub-goals
that guide the learning process. We show that intentions of human
players, i.e. the precursor of goal-oriented decisions, can be robustly
predicted from eye gaze even for the long-horizon sparse rewards
task of Montezuma’s Revenge – one of the most challenging RL
tasks in the Atari2600 game suite. We propose Int-HRL: Hierarchical
RL with intention-based sub-goals that are inferred from human
eye gaze. Our novel sub-goal extraction pipeline is fully automatic
and replaces the need for manual sub-goal annotation by human ex-
perts. Our evaluations show that replacing hand-crafted sub-goals
with automatically extracted intentions leads to a HRL agent that
is significantly more sample efficient than previous methods.
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1 INTRODUCTION
Recent advances in artificial intelligence (AI) in general, and rein-
forcement learning (RL) in particular, have shown promising results
in developing agents that can interact in complex environments and
solve challenging real-world tasks, such as robotic manipulation
at scale [16]. Despite these promising results, a key limitation of
RL agents is that training them requires extensive exploration and
training data. A large body of research [3, 6, 13, 26, 33] has thus
relied on computer games and other simulated environments to
develop and evaluate novel AI agents. One of the most popular
testbeds are games from the Atari2600 suite implemented in the
Arcade-Learning-Environment (ALE) [6]. The Atari2600 games are
particularly useful to evaluate RL agents [35] as they not only have
complex visuals but are also challenging for human players [21].

Research on the Atari2600 benchmark has focused on deep RL [3,
4, 26]. While deep RL agents, such as Agent57 [3], have successfully
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beaten the human benchmark on all 57 Atari games, they aresample
ine�cient and, therefore, require an excessive amount of training.
Moreover, deep RL methods su�er from a lack of explainability
inherent to the deep neural networks used for Q-value estimation.
A more promising approach is hierarchical RL (HRL) [18, 19, 32]
that decomposes an RL problem into multiple sub-problems, thus
also improving explainability. A key challenge with HRL is the
decomposition of the task that often requiresmanual and expert
annotations, which is tedious, time-consuming, and does not easily
generalise to other tasks or games.

To address these limitations we propose a novel approach to
automatically identify sub-goals in HRL from human eye gaze be-
haviour. Eye gaze is particularly promising as the gaze location has
been linked to human intentions and goals [5, 10, 11, 15, 29]. We
hypothesise that these intentions and goals can be further linked
to sub-goals so, by predicting players' intentions from their gaze,
sub-goals can be identi�ed automatically. Inspired by prior work
on gaze-based intention prediction [10, 11, 15], we extract four
gaze features and train a Support Vector Machine (SVM) model. We
evaluated the SVM on Montezuma's Revenge (MR), a long-horizon
sparse reward game from the Atari2600 benchmark, with data from
Atari-HEAD [35], a data set that o�ers gaze data in addition to
human gameplay demonstrations. Our intention prediction model
achieves an average accuracy of 75%, demonstrating the relation be-
tween intention and gaze behaviour, which motivates the automatic
extraction of sub-goals for HRL agents. Finding useful sub-goals,
which is also known as theoption discovery problem[8], is a ma-
jor issue in HRL. However, by using user intents and gameplay
demonstrations, our method is able to not only re�ne and extract
the sub-goals, but also the sequence in which these have to be
solved to complete the game level. We then integrate the predicted
sub-goals into the HRL framework hg-DAgger/Q [19] and show
that this approach can solve the �rst room of MR three times more
e�ciently � improving sample e�ciency from around 2.3 million
to around 625 thousand training steps.

In summary, our work makes two distinct contributions: (1) We
propose a novel method to predict sub-goals for HRL from eye
gaze and human demonstration data. Gaze information is used to
predict user intentions that are linked to the sub-goal locations,
while demonstration data provides the order in which these sub-
goals have to be solved to complete a task. (2) We evaluate our
approach on Montezuma's Revenge from the Atari2600 benchmark
and demonstrate signi�cant improvements on two key limitations:
sample e�ciency and the need for manual expert annotations.
These �rst results are promising and point towards new intention-
based HRL methods that leverage both hierarchical methods and
additional human behavioural data, such as eye gaze, to train more
e�cient agents that can solve complex visual problems.

2 RELATED WORK
Hierarchical Reinforcement Learning . Deep reinforcement
learning (RL) has shown great results on the Atari benchmark but
still struggles to learn robust value functions from sparse feedback
in long-horizon games such as MR. Speci�cally, current state-of-
the-art methods require frame samples in the range of billions,
which forces researchers to develop elaborate distributed training
schemes [3, 26] that still take a considerable amount of time to

train [13]. HRL, on the other hand, o�ers a way of exploiting the
hierarchical structure of decision-making tasks, guiding the agent
towards meaningful sub-goals, e�ectively increasing the sample
e�ciency of agents. Moreover, agents achieving consecutive sub-
goals, are directly understandable, making HRL particularly useful
in domains, where explainability is required.

Early on, even before deep RL, two ideas have emerged in HRL:
the options framework [30] and feudal networks [12]. Sutton et
al. [30] have proposed to temporally extend actions intooptions,
which are composed of a policy, a termination condition, and a set
of states in which they could be applied [30]. They have shown that
Q-learning could be generalised to learning policies over options
and that learning inside these options, called "intra-option" learning,
allowed the agent to learn about the respective options without
executing them explicitly. Feudal networks, on the other hand,
de�ne a hierarchical structure of managers and sub-managers that
are only privy to the space and temporal state at their granularity,
e�ectively hiding information from their superior and providing
rewards to their sub-managers even if their superior goal was not
satis�ed [12]. Both hierarchical frameworks have demonstrated
much faster convergence than non-hierarchical methods in their
respective maze scenarios.

More recently, Kulkarni et al. have proposed a hierarchical ap-
proach to induce goal-directed behaviour that does not use sep-
arate Q-functions as in the options framework [18]. This made
their method scalable and promoted shared learning between op-
tions. To this end, they proposed a two-level framework in which
the top-level agent (meta-controller) was responsible for choosing
sub-goals while the low-level agent was concerned with achieving
these goals. Le et al. have extended this approach by integrating
the interactive imitation learning approach DAgger [27] into the
meta-controller [19]. This, however, introduced the need for an
expert during training. Their approach is also similar to feudal
networks [12, 32] in their hierarchical structure, however, needs
signi�cantly less data as it does not use standard RL on the higher
level. Vezhnevets et al. have later argued that a disadvantage of[18]
is the need for pre-de�ned sub-goals and have chosen to learn
goal embeddings implicitly [32]. In this work, we take the best of
both worlds and leverage the information provided by gaze data
to extract sub-goals independently. This allows us to use the more
sample-e�cient hierarchically guided method (hg-DAgger/Q) [19].

Another work developed concurrently with ours is based on the
options framework but also de�nes intentions as fully satis�ed if a
sub-goal is reached and evaluates a reduction in available actions
to the ones that are a�ordable in a given state (a�ordances) via
attention. Nica et al. [23] introduce thesea�ordance-aware sub-
goal optionswith a respective model-free RL algorithm and �nd
empirically in a MiniGrid domain that this yields better sample
e�ciency and higher performance in long-horizon tasks. While
they also incorporate visual attention, they do so by applying it to
limit an agent's action choices. In our work, on the other hand, we
use visual attention maps generated from eye gaze data to extract
meaningful sub-goals that can be directly selected by the meta-
controller of our more feudal network-like architecture.

Intention Prediction . Intentions are goals and desires associ-
ated with a concrete plan, i.e. an intention causes a sequence of
actions that lead to achieving a certain goal [2]. In other words,



Figure 2: Sub-goal extraction pipeline: (a) proposal extraction is performed from human attention maps for each episode and
resulting proposals are merged via non-maximum supression (NMS), then �nal proposals for one room are matched with
human agents' trajectories (b), yielding labeled sub-goals and visitation order (c).

intentions are the precursor of actions, which poses the question
whether human intentions are able to pose as sub-goals for HRL
agents, where the hardest problem is to discover suitable sub-goals
[8]. However, human intention prediction has never been done in
this context before. Therefore, before we can replace hand-crafted
sub-goals with human intention, we verify whether intention pre-
diction is feasible on MR.

Model-free intention prediction models rely on eye gaze as the
most important feature [5, 10, 11, 15, 29]. For a tabular summary of
intention and activity recognition using eye gaze in Virtual Reality
(VR), PC, table-top, and real-world environments we refer the reader
to Chen and Hou [10]. The work of Huang et al. [15] is the most
relevant to ours, as they consider intention prediction as a multi-
class classi�cation in a real-world scenario. They achieved 89%
accuracy in their collaborative ingredient prediction task, where
a customer instructs a worker to add displayed ingredients to a
sandwich, and 76% accuracy with gaze features alone. The gaze
features used in their SVM model were:total duration of looks,
most recently looked at, number of glances, duration of �rst glance.
We successfully test their model on MR with gaze data from the
demonstration data set Atari-HEAD [35].

Belardinelli [5] o�ers a more general review on gaze-based inten-
tion estimation, identifying application areas of intention prediction
as human-computer interfaces, human-robot interaction, and Ad-
vanced Driving Assistance Systems (ADAS) with relevant works
from the last decade of research. However, the application of inten-
tions to solve theoption discovery problemin HRL, or in our case
the sub-goal discovery problem, is to the best of our knowledge a
novel idea and constitutes the main contribution of our work.

3 SUB-GOAL DISCOVERY
Prerequisites . MR is one of the most challenging games in the
Atari2600 suite because of its long planning horizon and sparse re-
wards [19]. A RL agent only receives feedback sparingly, requiring
many actions to achieve a small reward. Unlike similar long-horizon
planning tasks, e.g. arti�cial grids [8, 23], MR is more challenging
because it features di�erent rooms that change according to the
current level and collecting items allows for di�erent actions in
them. Therefore, to identify a speci�c state of the game it is neces-
sary to know the position of the agent, room ID, level number, and
the number of keys held [9]. The room ID is particularly important
for our method because gaze data should be evaluated separately

for each room so that gaze points can be mapped to the speci�c
areas of interest.

The required state information can be extracted directly from
the ALE via an environment wrapper called Atari Annotated RAM
Interface (AtariARI) [1]. The wrapper parses information from the
state variables in the ALE and makes it available for each environ-
ment step. However, the AtariARI wrapper was not used in the
collection process of the data set Atari-HEAD [35]. To acquire the
necessary labels subsequently, we simulated the episodes played
by humans. This was possible as the original collection was done
in a frame-by-frame mode, labeling each consecutive action.

Sub-goal Extraction . Our method for sub-goal extraction is
inspired by previous research that showed that visual attention is
a predictor of human intentions [5, 10, 11, 15, 24] and is further
validated by successfully performing intention prediction on the
extracted sub-goals in room one. The novel extraction pipeline is vi-
sualised in Figure 2: separate visual saliency maps are calculated for
each episode and further isolated to only include the gaze data from
the �rst room in the �rst level. These saliency maps are generated
by adding each gaze point to the frame and passing a Gaussian �lter
over the generated �xation map with variancef being one visual
degree (pixel / visual degrees of the screen). Finally, the saliency
map is normalised into the range of»0•1¼. An example saliency map
can be seen in Figure 2 (a), where hot areas (red/yellow) indicate
a high focus of attention across the selected time frame, and cold
areas (blue) were not gazed upon at all.

After generating saliency maps for all episodes, each saliency
map was thresholded , i.e. only values above0”4 were kept. This
threshold was �ne-tuned to yield the best results over the entire sub-
goal extraction pipeline, a qualitative assessment of other thresholds
can be seen in Figure 3. Then, sub-goal proposals were generated,
by drawing an agent-sized bounding box around each remaining
saliency map point. These proposals were then processed with a cus-
tom implementation of the non-maximum suppression algorithm
(NMS) [22]. In general, NMS is applied to suppress overlapping
bounding boxes if they exceed an Intersection-over-Union (IoU)
threshold, and, in our case, boxes with higher saliency values were
favoured. Then, the remaining overlapping boxes were merged
into one. After the number of sub-goal proposals for each episode
was greatly reduced in this manner, the process was repeated to
combine proposals across all episodes, yielding a �nal number of
11 possible sub-goals for room one, as shown in Figure 2 (b).



Figure 3: Sub-goal extraction examples on three rooms of MR with di�erent saliency map thresholds from 0”2 to 0”5 on human
gaze data, as well as with saliency maps generated by the MSI-Net [ 17] and DVS [20] saliency models with �xed threshold of 0”4.

With the de�nition of intention in mind, where intention directly
leads to goal-directed behaviour [2], it is intuitive to only include
sub-goals as labels for intentions that are visited during gameplay.
Therefore, we ran another simulation of the game data from human
players to �nd the sub-goals that were visited and in which order
(trajectory matching). As MR is considered to be an almost deter-
ministic game, i.e. there exists a best sequence of sub-goals, this
resulted in almost identical orders across episodes. The remaining
discrepancies were recti�ed by implementing a majority vote.

Overall, this extraction procedure resulted in 7 remaining sub-
goals, labeled in order as shown in Figure 2 (c): moving from the
middle ladder (0) to rope (1) and bottom right ladder (2), to crossing
the middle area with the dangerous and dynamic skull (3), to the
bottom left ladder (4), climbing up to collect the key (5), and then
reversing this order to get to the left door (11). Interestingly, in all
the episodes collected of human gameplay, only the left door was
used, most likely because this is the best route suggested in MR
solution guides.

In comparison to the four hand-crafted sub-goals selected by the
HRL framework of Le et al. [19] (top row of Figure 1), which they
hand-picked from the six sub-goals manually selected by Kulkarni
et al. [18], our automatic pipeline extracted the same goals and
added more areas of interest. In detail, Kulkarni et al. originally
performed object detection on the image of room one and then
chose the two doors, the three ladders, and the key as entities to
de�ne relational goals in the form ofagent reaches goal.

Sub-goal Analysis. We further analysed our sub-goal extrac-
tion pipeline (Figure 2) qualitatively by generating proposals and
�nal sub-goals for additional rooms of MR, with di�erent saliency
map thresholds, but also with arti�cial saliency maps generated by
saliency models [17, 20], the results of which can be seen in Figure
3. We showcaseRoom 1as the starting point of the game,Room 0as
the second room reached when choosing the left door, andRoom 10
as it features a special room layout. The saliency map threshold is a
hyperparameter that needs to be �netuned on the overall extraction,
where we have chosen0”4 as it includes all hand-crafted sub-goals
proposed by prior work [18, 19] with the meaningful addition of

the area around the skull, without adding insigni�cant goals as
with lower thresholds, but still including the door, which would
be left out by a higher threshold. While there are no hand-crafted
sub-goals to compare to for other rooms of MR, we can see that the
pipeline also selects meaningful sub-goals, e.g. the bottom pathway
in Room 0, the disappearing �oor inRoom 10, or the diamonds that
give an external reward in both. In contrast, arti�cially generated
saliency maps by MSI-Net [17], a standard saliency model with
state-of-the-art results on the saliency benchmark CAT2000 [7],
and DVS [20], a saliency model optimised for data visualisations,
have a predominant focus on the agent itself and otherwise fail
to �nd important steps like the doors, even though they are high-
lighted in the same colour as the key. Note here that saliency map
prediction was done on the RGB images.

Intention Prediction . For testing the intention prediction model
of Huang et al. [15] on our extracted sub-goals, we preprocessed the
gaze data following prior work [10, 11], extracting saccade and �xa-
tion events and calculating the four features:total duration of looks,
most recently looked at, number of glances, duration of �rst glance.
We then implemented intention prediction as a multi-class classi-
�cation for the 7 sub-goals of room one with a SVM. We achieve
an average prediction accuracy of 75% in a 10-fold cross-validation,
which is signi�cantly better than a random model and also outper-
forms results reported on other data sets [5, 15]. We argue that this
corroborates the e�cacy of using human gaze data as an indicator
of intention and motivates the extraction of sub-goals for HRL from
human intention.

4 INTENTION-BASED LEARNING
Baseline. One approach for solving long-horizon decision-making
tasks is HRL, where two popular frameworks emerged in the past:
the options framework [23, 30] and feudal networks [12, 32]. Build-
ing upon a feudal architecture, by combining deep HRL with pre-
de�ned sub-goals, Kulkarni et al. [18] are able to outperform naïve
deep Q-learning. Their h-DQN model was tested on two delayed-
reward domains, including the �rst room of MR, where their ap-
proach is able to reach the door after 2.5 M samples. Taking the idea
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